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Efficient cropping requires yield estimation for each involved crop, where data-driven models are commonly applied. In recent
years, some data-driven modeling technique comparisons have been made, looking for the best model to yield prediction. However,
attributes are usually selected based on expertise assessment or in dimensionality reduction algorithms. A fairer comparison should
include the best subset of features for each regression technique; an evaluation including several crops is preferred. This paper
evaluates the most common data-driven modeling techniques applied to yield prediction, using a complete method to define the
best attribute subset for each model. Multiple linear regression, stepwise linear regression, M5’ regression trees, and artificial neural
networks (ANN) were ranked. The models were built using real data of eight crops sowed in an irrigation module of Mexico. To
validate the models, three accuracy metrics were used: the root relative square error (RRSE), relative mean absolute error (RMAE),
and correlation factor (R). The results show that ANNs are more consistent in the best attribute subset composition between the
learning and the training stages, obtaining the lowest average RRSE (86.04%), lowest average RMAE (8.75%), and the highest

average correlation factor (0.63).

1. Introduction

Crop yield prediction (CYP) is important for agricultural
planning and resource distribution decision making [1].
Regrettably, CYP is a difficult task because many variables
are interrelated [2]. Yield is affected by human producer
decisions or activities (such as irrigated water, land, and
crop rotation) or incontrollable factors (such as weather).
Commonly, cropping planners use the previous yield as an
estimation of future yield. Nevertheless, crop yield varies spa-
tially and temporally with a nonlinear behavior, introducing
large deviations from one year to another [3]. Thus, more
efficient methods for CYP have been developed, in which
crop growth and data-driven models are the most popu-
lar. Crop growth models, using site-specified experimental
data, regional calibration, and plot level observations, are
recognized as robust and efficient models. However, they
are available only for some crops, with development time
and cost being extremely large [3]. On the other hand,

data-driven models work with high-level information and are
built empirically without a deep knowledge about physical
mechanisms which produce the data. Previous works suggest
that data-driven models have better adaptability for cropping
planning than crop growth methods due to their friendly
implementation and performance [4].

Data driven models are widely applied using classical
statistics and data-mining methods. Statistical models use
parametric structures tuned with sum-of-squares residuals,
validated by hypotheses test and confidence intervals. Most
of the statistical applications for CYP have been linear [3],
obtaining a range from bad to moderate results. Data mining
applies machine learning techniques and nonparametric
structures, in which validation uses prediction accuracy.
Machine learning (ML) obtains nonlinear models from
massive datasets [5]. Most common ML techniques for
CYP are regression trees [6] and neural networks [3, 4, 7].
Despite the high site dependency, neural networks are widely
recognized as robust models, obtaining good results for CYP



[7]. Comparisons between linear and nonlinear models for
CYP show a small advantage in favor of nonlinear models
[3, 7]. However, the attribute subset is usually the same for
all the evaluated techniques. In practice, the explanatory
attributes are selected from expertise assessment or previous
publications, for instance, [3, 8]. However, the explanatory
attributes may have a different impact on each technique,
even using the same dataset [9]. A fairer comparison should
include the best attribute subset for each technique, selected
with some performance metrics [10]. Regrettably, only an
exhaustive approach can guarantee the optimal subset for
all regression techniques. Some CYP datasets have relatively
few attributes and an exhaustive approach can be applied to
model comparison purposes [8].

In this paper, a comparison between linear and nonlinear
data-driven modeling techniques for CYP is presented. The
best attribute subset for each technique is determined by
measuring the predictive accuracy of each model subset. To
obtain the optimal subset, a recursive algorithm finds all the
feature combinations, building a regression model of each
subset. The models are built using most samples of training
datasets, leaving the more recent to measure the performance.
The best subset for each technique is tested with samples
representing future information which had not been included
in the training stage. The most common techniques for CYP
were compared: multiple linear regression, stepwise linear
regression, M5’ regression trees, and perceptron multilayer
neural networks. Results per technique are compared against
those obtained using the optimal attribute combination
derived from the test dataset. The potential attributes con-
sidered for this work were irrigation water depth (mm),
accumulated rainfall (mm), solar radiation (MJ/m?), max-
imum and minimum temperatures ("C), relative humidity
(%), and the farm location. To build the models, historical
data of eight crops were obtained from one irrigation module
located in Mexico. Results show the best CYP technique,
the most influential attributes for each model, and the fact
that an exhaustive approach on the training dataset does not
guarantee optimality on testing dataset.

This paper is organized as follows. Section 2 describes
data sources, data-driven techniques, accuracy metrics, and
the recursive algorithm used to build and test the models.
Section 3 shows the experimental results and discussion.
Finally, Section 4 presents the conclusions about realized
work.

2. Materials and Methods

2.1. Data Description. This paper uses data obtained from the
irrigation district 075 (Santa Rosa III-1 module) in Sinaloa,
Mexico (one of the largest and most productive districts
in the country). Two data sources from the year 1999 to
2007 were collected: (a) agricultural production data and
(b) weather information data. The former included attributes
regarding sowed areas, crop types, quantity of irrigated water,
starting and ending sowing dates, and crop yield. Such data
were obtained from Spriter-GIS system [11]. The second data
source includes climatological variables measures such as
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TABLE 1: Potential attributes in crop datasets.

?;geﬂ);:;e Attribute description

SP Section (farm location where crop was sowed)
IWD Irrigation water depth applied (mm)

SGR Solar radiation (M-Joules/m?)

RF Rainfall (mm)

MaxT Maximal temperature ("C)

MinT Minimal temperature (°C)

RH Relative humidity in leafs (%)

rainfall, solar radiation, and temperatures. Weather data were
collected from the National Meteorological Service (SMN)
stations located in the module vicinity. The CRISP-DM |[5]
methodology was applied to clean, homogenize, and inte-
grate both data sources into one single database, obtaining
eight crop representative datasets. Eight potential attributes
(Table 1) were selected based on previous CYP works [12] and
the data availability. Such attributes are referred to as potential
because this work uses a complete algorithm to find the
best attribute subset for each regression technique. Thus, the
final subset of attributes depend on the algorithm execution.
Average of weather attributes (solar radiation, temperatures,
and humidity) was estimated with the last three crop growing
stages, the most influential in the crop development.

The crop datasets are described in Table 2. To simplify
future references of these datasets, an ID is assigned to each
one (which is shown in the first column). Table 2 describes
the quantity of records and periods of time used for the
training and testing stages. In order to maintain realistic
conditions, the last year of available data was reserved for
testing.

2.2. Data-Driven Modeling Techniques. The most common
data-driven techniques applied to CYP were selected for this
work: multiple and stepwise linear regression [3, 7], M5’
regression trees [2, 8, 13], and artificial neural networks [1, 3,
7,12].

2.2.1.  Multiple and Stepwise Linear Regression. Multiple
linear regression (MLR) is a popular technique which can
be applied to predict a dependent variable Y}, using a set of
independent variables X;;. MLR model is described by [14]

k

Y; = Z B;Xi; + € (1)
i1

where k is the number of independent variables, B; is a
regression coefficient, X; is the j value for the observation
i, and ¢; is the residual error. If X'X is a nonsingular
matrix, an approximation for B(f3) can be obtained by 8 =
-1 f—
(XTX) XTY. Then (1) can be rewritten as Y = XB+e.
Stepwise linear regression (SLR) works with the same
principle. However, SLR performs a semiautomated selection
on independent variables to maximize the model’s prediction
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TABLE 2: Testing and training samples distribution per crop dataset.

Dataset ID Crop species Cultivar Training period Training samples Testing period Testing samples
Pj01 Pepper (Capsicum annuum) Jalapeno 1999-2005 116 2006 18
CBP02 Common bean (Phaseolus vulgaris) Peruano 1999-2006 361 2007 9
CBAO03 Common bean (Phaseolus vulgaris) Azufrado 1999-2006 120 2007 21
CBMO04 Common bean (Phaseolus vulgaris) Mayocoba 1999-2006 332 2007 27

CP05 Corn (Zea mays) Pioneer 30G54 2000-2005 179 2006 19

PA06 Potato (Solanum tuberosum) Alpha 1999-2006 1749 2007 116

PAO7 Potato (Solanum tuberosum) Atlantic 1999-2006 1062 2007 92

TS08 Tomato (Lycopersicon esculentum Mill.) Saladette 1999-2005 182 2006 15

efficiency. Linear regression is performed by adding or
removing independent variables on each iteration. Initially,
the variable with the highest correlation (R-squared) mea-
sured with respect to the dependent variable is included.
Then, the remaining independent variable with the highest
correlation with respect to the dependent variable is selected.
This iterative process is repeated while the addition of a
remaining independent variable increases R-squared with
a significant quantity. We use the SLR implementation in
SPSS [15], which combines forward selection and backward
elimination [16]. At each step, the best remaining variable is
added according to a significance criterion « of five percent;
then the entire set of variables is reviewed to decide whether
a single variable is removed using an « of ten percent.

2.2.2. Regression Trees. A regression tree (RT) is based on a
decision tree, a classifier expressed as a recursive partition of
the samples’ space [17]. A tree is formed by nodes, in which
the first is named the root node (without incoming edges).
All the other nodes have exactly one incoming edge. A node
with outgoing edges is called a test node and a node without
outgoing edges is called a leaf node. Each internal node in
the tree splits the samples’ space into two or more subspaces
based on conditions of the input attributes values. In the
case of numerical attributes the condition refers to a range of
values. Each leafis assigned to one class representing the most
appropriate target value. Samples are classified by navigating
them from the root of the tree down to a leaf, according to
the outcome of the tests along the path. For regression trees,
the class at the leaf nodes assigns a numerical value to the
tested sample which corresponds to the value predicted by the
regression model. The most common algorithms to build RTs
are CART, M5, and M5' [17]. This work uses M5’ algorithm
implemented by Weka [17]; the standard deviation reduction
(SDR) is applied as a measure of impurity on continuous
attributes. The parameters to build an RT with a minimum of
two samples by node, pruned and smoothed, were selected.

2.2.3. Artificial Neural Networks. From a structural point
of view, an artificial neural network (ANN) is a collection
of simple processing units linked via directed and weighted
interconnections. Each processing unit receives a number of
inputs from the outside or other processing units. Each input
is calibrated based on the weights of their interconnections.

Once calibrated, inputs are combined and transmitted to
other processing units via the appropriate interconnections.
The units are organized by layers, hiding the intermediate
layers to the user. This process is represented by a nonadditive
and nonlinear function that maps the set of inputs to a set
of outputs [17]. The training stage is an iterative process
performed to pound connections and it is guided for error
measure. There are many ANN topologies and training
algorithms. This work uses the most popular topologies
and learning algorithm combinations: multilayer perceptron
(MLP) and backpropagation algorithm [17]. MLP network
has been a popular choice for CYP [1, 3]. Backpropagation
algorithm minimizes the error function using the gradient
descent method. The combination of weights obtained is a
solution of the learning problem. Since this method requires
computation of the gradient of the error function at each
iteration step, the continuity and differentiability of this func-
tion should be verified. In addition, an activation function
is required where the sigmoidal function (1/(1 + ¢ ¥)) is
commonly used [17]. In this work, a topology with three
layers and 10 neurons on a single hidden layer was used;
this topology was applied in other works [4]. The most
recommended parameters were applied such as the weight
decay and numeric attribute normalization [3]. Training
epochs, learning rate, and the momentum were established
by experimentation, being 1000, 0.3, and 0.01, respectively.
Quantity of neurons at the input layer depends on number
of attributes (see Section 2.5), while the output layer has only
a neuron (CYP estimation).

2.3. Accuracy Metrics. We use three of the most common
metrics of regression models [5]: the root relative square error
(RRSE), correlation factor (R), and the relative mean absolute
error (RMAE). RRSE compares the model prediction against
the mean, which is frequently used to supply the crop yield
value. An RRSE less than 100% indicates a prediction that is
better than the average value. Correlation factor (R) measures
the linear relationship between regression model predictions
and the real values. Mean absolute error (MAE) is the average
of estimation differences (in physical units). This metric is
expressed as a percentage relative to the mean yield, being
called RMAE instead of MAE. Equation (2) shows how these
metrics are calculated, where y is the real yield value, y
represents the yield estimation, i is the number of sample, y
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metricMeasures>,

clearList(resultList)

for i =0 to sizeOf (potentialAttr) begin
testAttr = testAttr U potAttr;
potAttr
end_for

return the results at the top of resultList
end_function

algorithm (a regression algorithm).

Begin

fori=index + 1to length(potAttr) begin

testAttr = testAttr U potAttr;
// recursive call

testAttr = testAttr —potAttr;
end_for
end_procedure

Function to obtain the best attribute subset on training samples.

Inputs: samples (a set of training samples), potAttr (set of potential attributes), algorithm (MLR,
M5’ or ANN), minYear, maxYear (minimum and maximum year in the training dataset).
resultList is a dynamic list and a global variable. Each entry in this list has the form <testAttr,

where testAttr is an attribute subset and metricMeasures are the metrics results obtained from an
model’s evaluation made with attributescontained in testAttr
Function findBestAttrSubset(samples, potAttr, algorithm, minYear, maxYear) {

localSamples = extract samples from samples in the range [minYear, maxYear — 1]
validSamples = extract samples from samples with year equals to maxYear

testAttr = create an empty set of attributes
// call a recursive procedure to evaluate all attribute subsets starting from the i attribute in

testAttrCombination(potAttr, testAttr, localSamples, validSamples, algorithm)

/I Recursive procedure to evaluate an attribute combination
/] Inputs: potAttr, testAttr (a set of attributes); trainSamples, validSamples (a set of samples),

procedure testAttrCombination(potAttr, testAttr, trainSamples, validSamples, algorithm)

/] make a regression model of algorithm type using trainSamples and testAttr
model = makeRegressionModel(algorithm, trainSamples, testAttr)
/1 evaluate a regression model using validSamples
metricMeasures = evalModel(model, validSamples)
// add the attribute subset and the metric measures in the sorted result list
addResults(resultList, (testAttr, metricMeasures))

index = obtain the highest position of one element of testAttr in potAttr

/ add the potential attribute i to testAttr

testAttrCombination(potAttr, testAttr, trainSamples, validSamples, algorithm)
/] remove the potential attribute i from testAttr

ALGORITHM I: Recursive algorithm to perform the optimal attribute subset search.

is the average of the real yield values, and ¥ is the average of
predictions:

ZL (y; - )71‘)2

RRSE (%) =
Z?:I (yi - 7)2

x 100,

Re 2 0iN0Gi-3) o

\/2111 (y; - 7)2 Z?=1 ()71' - 5)2

RMAE (%) = (%@—)ﬂ) % 100,

Many CYP works use root mean squared error (RMSE) as
accuracy metric. RMSE measures the difference between real
and estimations values, exaggerating the presence of outliers
[5]. We use RRSE instead of RMSE because the former applies
the average value as common reference point, being easy to
understand by people unaccustomed to physical crop yield
dimensions.

2.4. Method to Find the Best Attribute Subset. A combi-
natorial procedure to perform a complete enumeration of
all the subsets {x;,X,,X3,...,X,,} is presented in this paper.
The procedure starts with a potential set of attributes A =
{a;,a,,...,a,}, such that each x; is a subset of A. Each
x, subset is evaluated using the training dataset, which is
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TABLE 3: RRSE, R, and RMAE measures using the OAS on testing dataset.

Crop dataset RRSE ,(%) R , RMAE,(%)

MLR M5 ANN MLR M5 ANN MLR M5 ANN
PJjo1 50.69 29.29 49.62 0.87 0.96 0.88 8.63 4.56 8.27
CBP02 52.14 58.85 58.05 0.67 0.68 0.67 5.67 6.40 6.41
CBAO03 63.40 38.66 38.66 0.94 0.93 0.93 4.72 3.62 3.62
CBM04 70.53 71.20 75.04 0.69 0.59 0.58 1.30 1.59 1.58
CP05 87.83 83.52 87.59 0.72 0.65 0.70 8.13 6.39 8.46
PAO6 95.28 74.02 86.16 -0.13 0.63 0.54 25.58 20.05 23.13
PAO7 95.84 88.14 91.24 0.60 0.51 0.45 17.78 16.42 17.40
TS08 86.59 82.40 74.87 0.69 0.64 0.73 11.08 13.46 14.57
Average 75.29 65.76 70.15 0.63 0.70 0.72 10.36 9.06 10.43

divided in two datasets. The majority of samples are used to
build the models, while the most recent ones are applied for
performance measurement. In CYP context, if the [a, b] year
range of historical data is available for training, the [a,b — 1]
range is really used for training, and data from year b is
reserved for validation. The model’s validation is made using
the metrics described in Section 2.3. Each validation result
and the related attribute subset are registered in a sorted list
according to these metrics. Ties are solved in the following
order: RRSE (lower), R (higher), and RMAE (lower). At the
end of the process, the subset at the top is taken as the best.
Algorithm 1 shows the algorithm of the optimal attribute
search process.

The function evalModel(model, validSamples) of
Algorithm 1 evaluates the argument model with samples
taken from the validSamples dataset. This function uses
the percentage-split validation scheme approach [5]. We
tried other validation schemes as well, such as training and
validating the models with the entire training dataset and
cross-validation (CV). The former provided very poor results
to predict the yield of future samples. On the other hand,
CV (considered a robust validation scheme) was difficult to
apply because (1), for k subsets required for CV, k — 1 models
should be stored, and (2) the computational cost of the entire
process is increased k — 1 times for each evaluation [3], being
not computationally tractable in practical applications.

2.5. Distance to the Optimal Attribute Subset (OAS).
Algorithm 1 can be applied to both the learning and testing
stages. When this algorithm is applied to the former, a
ranking of attribute combinations is obtained, placing the
best attribute combination at the top. This subset is named
the learning attribute subset (LAS). In testing stage, the
algorithm is applied to the union of the training and the
testing datasets, obtaining a rank of attribute subsets. In
this last case, the subset at the rank’s top is named the
optimal attribute subset (OAS). Evidently, this last rank
cannot be available in practice, because testing dataset
represents unseen samples from the future. However, the
rank of attribute combinations that originated the OAS can
be used to define a new performance metric, which should
be used only for evaluation purposes. Let x be an attribute
subset and D the number of combinations that separates the

OAS results from the x subset results. Then D can be used
as a performance measure of x. We called measure D the
“distance to the optimal attribute subset”

3. Results and Discussion

Experimental results are presented in the next three sections.
Section 3.1 shows the metric measures obtained in testing
dataset with the OAS. Section 3.2 shows the metric measures
using the potential attributes. Section 3.3 describes the results
using the LAS on testing dataset.

3.1. Metric Measures Using the OAS on Testing Dataset. The
OAS for the testing dataset to each crop technique was
obtained with the algorithm of Section 2.4. Table 3 shows
every metric obtained per technique (RRSE, R, and RMAE).
RRSE shows that all techniques achieve better predictions
than the average. For the potato crop datasets (PA06 and
PA07), MLR obtains only slightly better results than the
average (RRSE of 95%). In general, nonlinear techniques
show some improvements over MLR, introducing small
RRSE measures and R values near to 0.7.

Tables 4(a), 4(b), 4(c), and 4(d) show the OAS compo-
sition found for each regression technique. The attributes in
OAS are shown in shaded cells. Evidently, OAS is the same for
SLR and MLR (Tables 4(a) and 4(b), resp.). Attributes selected
are grouped in Table 5, which shows the quantity of times
that a particular attribute is included in the OAS for each
crop dataset. The average column in Table 5 indicates that the
IWD, RH, SGR, and MINT attributes appear in more than
half of optimal crop yield models, mostly independent of the
regression technique. Besides, IWD (irrigation water depth)
was the attribute most selected by all techniques.

Because attributes selected can be influenced by temporal
elements, Figurel shows the results obtained only with
the five crop testing datasets of year 2007. Attributes most
frequently selected by MLR technique were MinT and IWD,
with the latter always included in the OAS. Attributes most
frequently selected by M5’ were MinT and RH, with the latter
always included in the OAS. On the other hand, attributes
selected by ANN technique were IWD and RE Unlike other
techniques, ANN did not always select a specific attribute.



TABLE 4: Attributes in OAS and LAS selected by each crop technique.
Attributes in optimal subset (OAS) are remarked with asterisks.
Attributes selected with training data (LAS) are identified with the
4/ symbol.

(a) SLR
Crop dataset Attributes .
SP IWD SGR RF MaxT MinT RH
PJjo1 v * Ve v *
CBP02 * NS VS * NE:
CBAO03 NE: * NE
CBMO04 # * * v
CP05 * \* NES * \/* *
PA06 SRRV * /i * \/* *
PA0O7 A/ / * \/* *
TS08 /# * * Ve * *
Count (OAS) 4 8 6 5 4 5 6
Count (LAS) 5 3 3 5 2
(b) MLR
Crop dataset Attributes .
SP IWD SGR RF MaxT MinT RH
POl Y P N
CBP02 \* VARV NV VE o AE
CBAO03 NEIRVE v N v \/* v/
CBMO04 * * \* N v
CP05 AVE RV Ve * \* *
PA06 /3 / * * AVE VA
PAO7 VS / * \* *
TS08 \/* * \/* % \/* %
Count (OAS) 4 8 6 5 4 5 6
Count (LAS) 4 6 7 4 6 5 3
(c) M5’
Crop dataset Attributes .
SP IWD SGR RF MaxT MinT RH
Pjo1 NN Vi N
CBP02 NE: VE A/ N * 3
CBAO03 v N N \/* *
CBMO04 v v v * v *
CP05 NE: * N
PA06 AVARVE™ v/ * NG *
PAO7 * Ve v \* *
TS08 Ve * * * v N
Count (OAS) 5 5 3 2 3 4 6
Count 7 4 5 2 6 5 2
(d) ANN
Crop dataset Attributes '
SP IWD SGR RF MaxT MinT RH
PJo1 N * 3 v % * %
CBP02 VE o A/ /x
CBAO03 \/* * NG
CBMO04 v * \*
CP05 \/* NE: NE:
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(d) Continued.

Attributes

Crop dataset .

SP IWD SGR RF MaxT MinT RH
PA06 Ve A J VA
PA07 VE v
TS08 \/* * ~/
Count (OAS) 3 5 5 3 2 3 4
Count (LAS) 5 3 3 5 2 3

TABLE 5: Quantity of crop yield models where attributes appear as
optimal.

Regression technique

Attribute , Average
MLR M5 ANN
SP 4 5 3 4.00
IWD 8 5 5 6.00
SGR 6 3 5 4.67
RF 5 2 3 3.33
MaxT 4 3 3 3.33
MinT 5 5 3 4.33
RH 5 6 4 5.00

3.2. Metric Measures Using All the Potential Attributes.
Table 6 shows the RRSE, R, and RMAE measures using
all the potential attributes as explanatory variables. RRSE
indicates that only two of the eight crop models per technique
obtain better predictions than the mean yield value. MLR
has three models with good predictions. However, PA06
model shows an R value of 0.07, indicating a very low linear
relationship between the prediction and the real yield. The
models for the PJ01 dataset are the most consistent, showing
good results with every technique and a small improvement
with nonlinear models. For every technique, the set of RRSEs
lower than one hundred percent was averaged; in the case
of Table 6, the figures obtained were 94.41, 74.34, and 75.79
for MLR, M5', and ANN, respectively. The averages with the
entire set of RRSEs were also calculated and shown in the
row named Average (all) of Table 6. We decided to average the
RMAEs with an RRSE lower than one hundred percent and
an R factor close to one and greater than a threshold value, set
as 0.6 in this work. As is well known, a good prediction model
should have a low RRSE and an R value close to 1. Therefore,
for all the potential attributes and when only RRSE and R are
considered, we can observe that M5’ is the best technique.
Averaging the RMAEs that accomplish this criterion (RRSE
< 100% and an R > 0.6), the best techniques were again M5’
and ANN.

The distance D to the optimal attribute subset (described
in Section 2.5) provides an idea of how far are the OAS
results to those obtained with all the potential attributes.
Table 7 shows D values for the evaluated techniques, which
indicates that very few models are close to the optimal results
using all the potential attributes. Considering all the 256
possible combinations, most of the obtained results with all
the attributes are located beyond the middle of the rank of
combinations.
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TABLE 6: RRSE, R, and RMAE measures using all the potential attributes.

Crop dataset RRSE ,(%) R , RMAEI(%)

MLR M5 ANN MLR M5 ANN MLR M5 ANN
Pjo1 85.36 48.83 65.51 0.89 0.9 0.92 14.21 6.99 9.28
CBP02 99.85 99.85 124.23 0.63 0.63 0.64 10.25 10.25 13.21
CBAO03 136.96 156.29 86.07 0.76 0.77 0.59 14.99 15.33 7.83
CBM04 470.62 262.08 350.32 -0.66 -0.66 —-0.68 1.2 6.54 8.05
CP05 102.68 362.5 123.61 0.36 0.08 0.54 10.12 32.25 11.75
PAO6 98.02 102.87 110.24 0.07 0.15 0.19 26.02 27.56 27.93
PAO7 110.86 165.41 113.18 -0.03 -0.13 -0.18 20.67 37.07 24.23
TS08 166.86 100.56 146.6 0.45 0.28 0.09 32.83 19.95 43.57
Average (RRSE < 100) 94.41 74.34 75.79 0.53 0.77 0.76 16.83 8.62 8.55
Count (<100) 3 2 2 3 2 2
Average (all) 158.9 162.3 139.97 0.31 0.25 0.26 17.54 19.49 18.23

Quantity of times that attributes are included in optimal subset
by technique (using 2007 testing datasets)

5 .
N
\ N
Y EY Y EY Y
N BY X EY N
2w N N N BN N
SEPEXPFEY BY BXpE N N
NCEY BN BN BN BYX X
NIEY BEY_BEX_EX BN
N N N NN N
o N N N N N N N
SP IWD SGR RF MaxT MinT RH
< MLR
M5’
n ANN

FIGURE 1: Quantity of occurrences of each attribute in the OAS for
each technique (only crop datasets with 2007 testing data).

TaBLE 7: Distance from OAS error measures using the potential
attribute set.

Distance from optimal (combinations)

Crop dataset ,
MLR M5 ANN

PJO1 38 14 18
CBP02 80 189 135
CBAO3 111 118 32
CBM04 231 135 216
CP05 71 206 196
PAO06 23 173 186
PAQ7 230 194 213
TS08 229 69 185
Average 127 137 148

3.3. Metric Measures Using the LAS on Testing Dataset. The
LAS for each crop technique was obtained during the learning
stage using only data from each training dataset. The models
built with the LAS were applied to predict the yield of
samples on testing dataset. In addition, SLR has its own

attribute selection mechanism and is included in this section.
RRSE and R measures in Table 8 show the obtained results.
Our attribute selection algorithm (Section 2.4) improves the
MLR, M5, and ANN models performance, increasing the
number of CYP models with RRSE measures lower than 100%
(MLR obtained five models, while M5' and ANN obtained
six models each). SLR has a poor performance, with only
one model with an RRSE measure lower than 100%, and an
average error even higher than MLR using all the potential
attributes (Table 9). RRSE of nonlinear techniques shows
small improvements with respect to MLR. In addition, R
measures of MLR are higher than those obtained by M5’ and
inferior to those obtained with ANN. Average R values for
the models with RRSE lower than 100% are greater than 0.5.
Only nonlinear techniques obtained an average RRSE value
lower than 100%. Among these, ANN obtained better results,
with the lowest RRSE, the highest R, and the lowest RMAE
measures.

Table 9 shows that MLR, M5', and ANN model errors
built with the LAS decrease considerably when they are
compared against the use of all the potential attributes.
Average RMAE values decreased as follows (in %): (a) for
MLR, from 17,54 to 13.59; (b) for M5', from 19.49 to 11.93; and
(c) for ANN, from 18.23 to 12.89. The average RMAE measure
for SLR was scored worse than MLR using all the potential
attributes, obtaining an RMAE of 18.65%. Table 10 shows the
distances D of the error measure obtained from the LAS to the
OAS results. ANN is the regression technique with more CYP
models closer to the optimal. MLR and M5’ present similar
average results. SLR was too far to optimal combination.

Tables 4(a), 4(b), 4(c), and 4(d) show the attributes con-
tained in each LAS grouped per technique. These attributes
are identified with a 4/ symbol. As it can be seen, LAS and
OAS differ, showing that the best attribute subset can vary
from one year to another. Nevertheless, such behavior is
different for each technique. Let us illustrate the situation
with Figures 2(a), 2(b), and 2(c), which show the frequency
when an attribute appears in the LAS and OAS for the MLR,
M5', and ANN regression techniques (resp.). To avoid mixing
results from different years, these charts only include attribute
subsets obtained from the crop datasets with 2007 testing
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TaBLE 8: RRSE and R measures using the LAS on testing dataset.

Crop dataset RRSE (%) , R ,

SLR MLR M5 ANN SLR MLR M5 ANN
PJo1 203.86 81.90 58.00 75.25 0.87 0.81 0.90 0.82
CBP02 130.52 55.05 74.67 58.05 0.66 0.52 0.73 0.67
CBAO03 98.76 136.96 112.45 58.40 0.64 0.76 -0.05 0.98
CBM04 479.43 306.29 85.30 78.96 -0.67 0.66 0.27 0.61
CP05 103.77 91.06 94.50 87.59 0.50 0.69 0.52 0.70
PAO6 102.41 102.36 85.96 101.33 -0.42 -0.32 0.55 0.11
PAO7 110.44 97.49 101.31 91.24 -0.06 0.67 0.09 0.45
TS08 112.85 86.59 82.40 137.48 0.42 0.69 0.64 0.69
Average (RRSE < 100) 98.76 82.41 80.14 74.92 0.50 0.67 0.60 0.71
Count (<100) 1 5 6 6
Average (all) 167.76 119.71 86.82 86.04 0.24 0.56 0.46 0.63

Quantity of times that attributes are included in optimal subset
(MLR)

5
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FIGURE 2: Quantity of occurrences of each attribute on the LAS and OAS for each technique (only crop datasets with 2007 testing data).

data (CBP02, CBA03, CBM04, PA06, and PA07). Figures 2(a)
and 2(c) show that OAS and LAS are similar for MLR and
ANN techniques. On the other hand, LAS and OAS obtained
with M5’ technique are completely different in almost all
cases (Figure 2(b)). As a result, ANN is the most consistent
technique since its best attribute subsets scarcely varied from
year to year (Figure 2(c)).

We applied the R measure to the attributes in LAS that
intersects the OAS and the RRSE. This allows us to distinguish
the error caused by including the relevant attributes in
the model and the errors due to the regression technique
predictive ability. This measure is shown in column two
of Table 11. We also applied the R metric to the attributes
excluded from LAS and those selected in OAS with the
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TABLE 9: RMAE (%) measures using the LAS on testing dataset.

Crop RMAE (%) ,
SLR MLR M5 ANN
Pjo1 40.61 15.46 10.00 12.46
CBP02 14.10 5.16 8.41 6.41
CBAO03 10.11 14.99 12.35 6.08
CBM04 11.31 8.65 1.72 1.72
CP05 10.11 8.81 8.04 8.46
PAO6 27.17 26.98 23.10 26.29
PAO7 21.01 17.61 18.35 17.40
TS08 14.75 11.08 13.46 24.27
Average (RRSE < 100) 10.11 11.13 10.79 8.75
Count (RRSE < 100) 1 5 6 6
Average (all) 18.65 13.59 11.93 12.89
TaBLE 10: Distance from LAS to OAS results.

Crop Distance from opti,mal

SLR MLR M5 ANN
Pjo1 184 30 26 35
CBP02 145 7 13 1
CBAO03 43 11 69 5
CBMO04 232 170 6 6
CP05 96 9 23 1
Average 140 65.4 474 9.6

TaBLE 11: Correlation coefficient between the counts of attributes in
LAS-OAS intersection and RRSE.

R Correlation between R Correlation between

iiirjf;ﬁ“ RRSE and LAS-OAS  RRSE and attributes
intersection left out from OAS

SLR -0.707 0.347

MLR —0.542 0.150

M5’ -0.641 0.034

ANN ~0.068 0.340

RRSE. This R correlation is shown in the third column of
Table 11. These measures are included for SLR, MLR, and M5’
techniques. From column two in this table we observe that
variables included in LAS and OAS have a strong effect over
the error metric for SLR and M5', while the effect of these
variables scarcely affects the ANN performance. The third
column of Table 11 indicates that the attributes excluded from
OAS and included in LAS have a very small effect in M5’ and
MLR, while a moderate impact over ANN and SLR can be
observed. As a consequence, a biggest error among all these
techniques can be expected from SLR.

4. Conclusions

This paper presents a comparison among several methods
(linear and nonlinear) for crop yield prediction. The com-
parison is made using the best attribute subset found in the
training dataset for each method, which was detected using

a complete algorithm and the percentage-split validation
scheme. The algorithm uses the oldest samples in training
datasets to build the models, leaving the most recent to
search the optimal attribute subset. The best attribute subset
performance is measured with testing datasets composed of
unseen samples from the future. The comparison covered
eight crop datasets. The most common data-driven tech-
niques for crop yield prediction were evaluated: stepwise
linear regression, multiple linear regression, regression trees,
and neural networks. The experimentation shows that our
attribute selection using a complete method substantially
improves the performance of all the evaluated techniques.
ANN and M5’ obtained the best prediction, and, between
them, the former achieved the lower RRSE, the higher R
correlation, and the lower RMAE value. With respect to
the optimal attribute subset composition, MLR and ANN
techniques show small differences between the best attribute
subset in learning stage and the optimal attribute subset for
the testing stage, while M5’ shows the largest differences.
The optimal attribute composition was different for all the
evaluated techniques, which reinforces the hypothesis that
using the same attributes subset for all the techniques is
unfair. Nevertheless, none of the techniques was able to
obtain the optimum subset with the training data for all the
eight crops. The best technique was ANN, which achieved
three attribute subsets equal to the optimal, and the other two
subsets were very close to it. Thus, an attribute subset that can
be used permanently in all the years for all the crops is difficult
to select.

Results obtained from machine-learning methods cannot
be directly applied to a different set of crop databases,
due their high data dependency. However, the procedure
presented in this paper can be extended for a larger number
of techniques and crop datasets. A future research focused on
finding the best minimal subset of attributes which provide a
good yield of predictions on other irrigation zones should be
done.
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