

"ACCIONES PARA MEJORAR LA CONDICION AMBIENTAL EN LA CUENCA DEL RÍO QUERÉTARO"

TOYOTA MOTOR CORPORATION

Instituto Mexicano de Tecnología del Agua

Coordinación de Hidrología Subcoordinación de Hidrología Subterránea

INFORME FINAL ETAPA 1

1	CONTENIDO	
2	OBJETIVO	5
3.1	CENSO DE APROVECHAMIENTOS Y PIEZOMETRÍA	5
3.2	NIVELACIÓN DE BROCALES	. 15
3.3	ESTUDIOS GEOFÍSICOS	. 17
3.4	ANÁLISIS FISICOQUÍMICOS E ISOTÓPICOS	
3.5	DETERMINACIÓN DE PARÁMETROS HIDROGEOQUÍMICOS DE CAMPO	
	.5.1 ANÁLISIS DE PARÁMETROS QUÍMICOS	
	.5.2 ISÓTOPOS ESTABLES	
_	.5.3 ANÁLISIS DE TEMPERATURA	
3.6	PRUEBAS DE BOMBEO DE LARGA DURACIÓN	
3.7	DIRECCIÓN DE FLUJO DEL AGUA SUBTERRÁNEA	
	BALANCE DE AGUA SUBTERRÁNEAS	
3.8		
3.9 V/AF	INSTALACIÓN DE FLUJÓMETROS EN POZOS PARA DETERMINAR RIACIÓN DE LA EXTRACCIÓN EN EL TIEMPO	
3.10		
Figu Figu	DICE DE FIGURAS ura 3.1.1 Localización de pozos censados ura 3.1.2 Usos del agua subterránea	6
	ura 3.1.3 Pozos de agua subterránea de los acuíferos Valle de Celaya y Valle	
	erétaro (azul) con los pozos de la subcuenca del Río Querétaro (naranja) ura 3.1.4 Usos del agua subterránea en los acuíferos Valle de Celaya y Valle	
	erétaro	
_	ura 3.1.5 Usos del agua subterránea en la Subcuenca del Río Querétaro	
	ura 3.1.6 Usos del agua subterránea en la zona Obrajuelo-Querétaroura 3.1.7 Usos del agua subterránea en la zona de Obrajuelo-Querétaro	
_	ura 3.1.7 Osos del agua subterranea en la zona de Obrajuelo-Queretaroura 3.1.8 Usos del agua subterránea en la zona de Obrajuelo	
_	ura 3.1.9 Usos del agua subterránea en la zona de Obrajuelo	
	ura 3.3.1 Sección geofísica de la zona de Celaya-Salitre	
_	ura 3.3.2 Localización de puntos de sondeos TEM y secciones geofísicas P1 y P2 e la de Obrajuelo	
	ura 3.3.3 Sección geofísica P1 (Norte-Sur) zona de Obrajuelo	
_	ura 3.3.4 Sección geofísica P2 (Este-Oeste) zona de Obrajuelo	
_	ura 3.4.1 Diagrama de Stiff M-1	
_	ura 3.4.2 Diagrama de Stiff M-5	
_	ura 3.4.3 Diagrama de Stiff M-6ura 3.4.4 Diagrama de Stiff M-7	. 21 27

Figura 3.4.5 Diagrama de Stiff M-8	27
Figura 3.4.6 Diagrama de Stiff M-10	27
Figura 3.4.7 Diagrama de Stiff M-11	28
Figura 3.4.8 Diagrama de Stiff M-13	28
Figura 3.4.9 Diagrama de Stiff M-14	28
Figura 3.4.10 Diagrama de Stiff M-16	28
Figura 3.4.11 Diagrama de Stiff M-17	
Figura 3.4.12 Diagrama de Stiff M-18	
Figura 3.4.13 Diagrama de Stiff M-19	
Figura 3.4.14 Diagrama de Stiff M-20	
Figura 3.5.1. Equipo utilizado para la determinación de los parámetros de campo	
Figura 3.5.2 Colecta de muestras en la visita de campo	
Figura 3.5.3 Resultados del CCME-WQI	
Figura 3.5.4 Diagrama de Piper	
Figura 3.5.5 Manantiales termales en la Laguna el Salitre	
Figura 3.5.6 Pozo de agua potable San Antonio Calichar	
Figura 3.5.7 Pozo de agua potable Fuentes de Balvanera	
Figura 3.5.8 Pozo de agua potable La Estancia	
Figura 3.5.9 Pozo de agua potable San Isidro del Llanito	
Figura 3.5.10 Pozo de agua potable San Ignacio	
Figura 3.5.11 Pozo Hotel La Pitaya	
Figura 3.5.12 Muestra 1 Pozo de agua potable Calera de Obrajuelo	
Figura 3.5.13 Muestra 2 Pozo de agua potable Punta de Obrajuelo	
Figura 3.5.14 Muestra 3 Pozo de agua potable La Norita (termal)	. 44
Figura 3.5.15 Muestra 4 Pozo agricultura Rancho Don Manuel	45
Figura 3.5.16 Muestra 5 Pozo agricultura Rancho Los Aguilar	
Figura 3.5.17 Muestra 6 Pozo de agua potable San Miguel Ixtla	
Figura 3.5.18 Muestra 7 Pozo pecuario (Termal)	
Figura 3.5.19 Muestra 8 Pozo agrícola San Bartolomé (Termal)	
Figura 3.5.20 Muestra 9 Pozo de agua potable Fuentes de Balvanera	
Figura 3.5.21 Muestra 10 Pozo de agua potable La Estancia	
Figura 3.5.22 Concentraciones de Hierro (Fe) en la zona de estudio	
Figura 3.5.23 Concentraciones de arsénico (As) en la zona de estudio	50 51
Figura 3.5.24 Concentraciones de sodio (Na) en la zona de estudio	52
Figura 3.5.25 Concentraciones de cadmio (Cd) en la zona de estudio	
Figura 3.5.26 Concentraciones de plomo (Pb) en la zona de estudio	
Figura 3.5.27 Gráfica de cloruro versus flúor	
Figura 3.5.28 Análisis gráfico de oxígeno y deuterio	
Figura 3.5.29 Gráfica de cloruro versus litio	
Figura 3.5.30. Mapa de temperatura en la zona de estudio	
Figura 3.5.31. Concentraciones de litio y cloro en la zona de estudio	
Figura 3.6.1 Resultados de pruebas de bombeo pozo Alamos I	
Figura 3.6.2 Resultados de pruebas de bombeo pozo Centro Expositor I	
Figura 3.6.3 Resultados de pruebas de bombeo Pozo Cañada 2B	
Figura 3.6.4 Resultados de pruebas de bombeo pozo Capilla II	
Figura 3.6.5 Resultados de pruebas de bombeo pozo Capilla IV	
Figura 3.6.6 Resultados de pruebas de bombeo pozo Jurica Robles (CEA)	
Figura 3.6.0 Resultados de pruebas de bombeo pozo Loma Ronita (Jurica Pueblo II)	

Figura 3.6.8 Resultados de pruebas de bombeo pozo Santa María Magdalena V (CEA) 69	
Figura 3.6.9 Resultados de pruebas de bombeo pozo Unidad Deportiva I (CEA)	
Figura 3.7.1 Disposición de nivel estático Guanajuato - Querétaro	
Figura 3.8.1 Zona de balance Guanajuato - Querétaro	
Figura 3.9.1 Instalación de flujómetro en el pozo de Punta de Obrajuelo	
Figura 3.9.2 Instalación de flujómetro en el pozo de Punta de Obrajuelo76	
Figura 3.9.3 Instalación de flujómetro en el pozo de San Bartolomé76	
Figura 3.9.4 Instalación de flujómetro en el pozo de San Bartolomé77	
ÍNDICE DE TABLAS	
Tabla 3.1.1 Usos del agua subterránea7	
Tabla 3.1.2 Usos del agua subterránea en los acuíferos Valle de Celaya y Valle de	
Querétaro9	
Tabla 3.1.3 Usos del agua subterránea en la Subcuenca del Río Querétaro10	
Tabla 3.1.4 Usos del agua subterránea en la zona de Obrajuelo-Querétaro	
Tabla 3.1.5 Usos del agua subterránea en la zona de Obrajuelo14	
Tabla 3.2.1 Estaciones geodésicas	
Tabla 3.2.2 Nivelación de brocales	
Tabla 3.4.1 Información general de los sitios de muestreo para el análisis físico-químico 22	
Table 3.4.2 Resultados de los análisis químicos	
Table 3.4.3 Resultados de pruebas específicas	
Table 3.4.4 Resultados de análisis isotópicos	
Tabla 3.4.5 Resultados de análisis de gases	
Tabla 3.5.1. Parámetros de campo y análisis de laboratorio	
Tabla 3.5.2. Objetivos utilizados para la evaluación del índice de calidad para uso y	
consumo humano	
Tabla 3.5.3. Resultados del índice de calidad CCME_WQI para uso y consumo humano35	
Table 3.5.4 Resultados de parámetros químicos (Octubre 2017-Mayo 2018)	
Tabla 3.5.5 Resultados de calidad del agua en mg/l	
Tabla 3.6.1 Compilación de los resultados de las pruebas de bombeo en Obrajuelo-	
Querétaro, 2017	

2 OBJETIVO

Gestión del agua subterránea y superficial en la agricultura y los impactos del uso de aguas residuales en riego así como la determinación del balance del agua subterránea, la selección de pozos y de instrumentos de medición puntual para monitoreo y seguimiento.

3.1 CENSO DE APROVECHAMIENTOS Y PIEZOMETRÍA

Uno de los principales trabajos que se realizó para este estudio fue el censo de aprovechamientos de agua subterránea.

En estas visitas, se recaudó diferentes tipos de información, tales como:

- ¬ nombre y los datos específicos del concesionario,
- ¬ ubicación y datos generales del uso,
- ¬ características constructivas,
- ¬ estado de operación.

Los pozos fueron localizados de acuerdo a los mapas topográficos de INEGI, escala 1:50,000 o de acuerdo a la información disponible en su sitio web.

Con el fin de determinar la disponibilidad de agua, es importante el conocimiento sobre su extracción (la oferta) y sobre su uso (la demanda). La cantidad de detalle necesario depende de los objetivos y la escala del análisis, para este caso, se analizó en la zona de estudio y área de influencia un total de 3899 pozos (*Figura 3.1.1*) en el área de la cuenca del Río Querétaro con respecto a la zona de estudio.

De acuerdo al uso de los pozos activos, se determinó que 2812 están diseñados para uso agrícola con un volumen de 776,4 Hm³/año que representa el 71% del volumen total de extracción de 1,093.53 Hm³/año del total de pozos, 835 son de uso público urbano con una extracción de 197,05 Hm³/año (18%); 144 pozos con un volumen de extracción de 104.07 Hm³/año (10%), 50 pozos están destinados para usos múltiples con 10,55 Hm³/año (1%), 27 y 31 pozos están destinados para la ganadería y servicios, respectivamente, con volúmenes de 2,39 Hm³/año (0,2%) y 3,07 Hm³/año (0,3%).

En la

Tabla 3.1.1 y Figura 3.1.2 se muestra el resumen de los pozos registrados en el área.

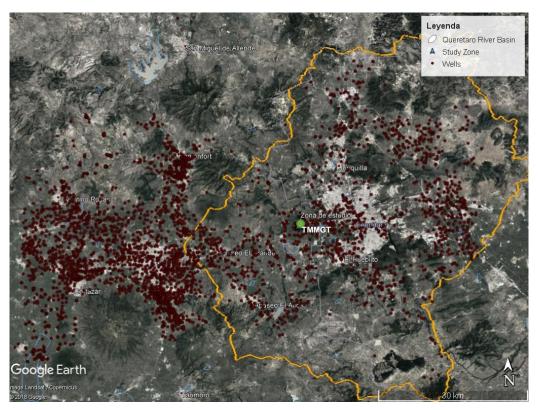


Figura 3.1.1 Localización de pozos censados

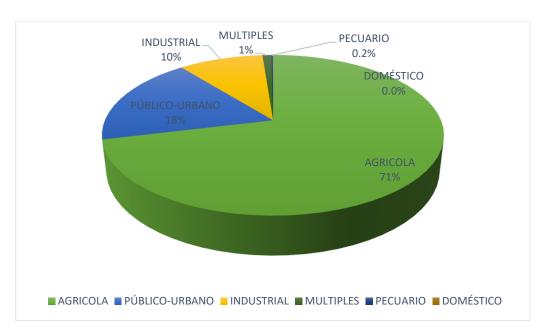


Figura 3.1.2 Usos del agua subterránea

Tabla 3.1.1 Usos del agua subterránea

		Vol	
Uso	Pozos	Hm³/año	% Vol
AGRICULTURA	2812	776.4	71%
PÚBLICO URBANO	835	197.05	18%
INDUSTRIAL	144	104.07	10%
MULTIPLES	50	10.55	1%
PECUARIO	27	2.39	0,2%
SERVICIOS	31	3.07	0,3%
TOTAL	3899	1093.53	100%

A continuación se hace una división de los 3,899 pozos, en la Figura 3.1.3 se pueden observar los pozos analizados los cuales fueron divididos por acuíferos: 1) 3,388 pozos de los acuíferos de Valle de Celaya y Valle de Querétaro (color azul) y en la 2) Sub-Cuenca del Río Querétaro (color naranja) un total de 511 pozos.

1) Acuíferos Valle de Celaya y Valle de Querétaro

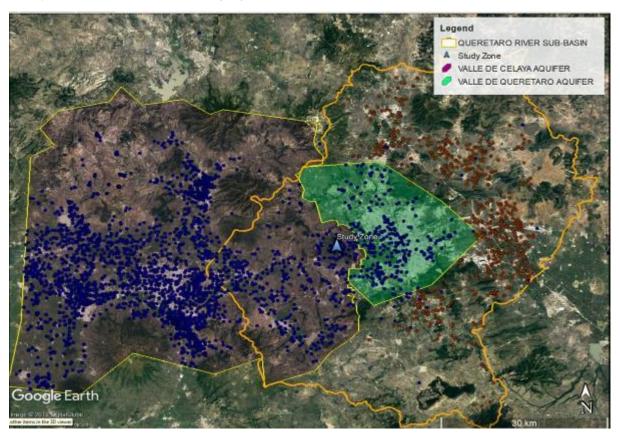


Figura 3.1.3 Pozos de agua subterránea de los acuíferos Valle de Celaya y Valle de Querétaro (azul) con los pozos de la subcuenca del Río Querétaro (naranja)

El análisis de uso de aguas subterráneas en los acuíferos del Valle de Celaya y Valle de Querétaro se muestra en la *Tabla 3.1.2* y *Figura 3.1.4*.

Dando un volumen de extracción total de **959,17 Hm³/año**, donde el uso de las aguas subterráneas su uso principal se destina principalmente para agricultura con una extracción de 670,92 Hm³/año (70%), para uso público-urbano con 177,67 Hm³/año (19%), para el uso Industrial se destinan 100.21 Hm³/año (10%), usos múltiples tiene una extracción de 8,35 Hm³/año (1%), pecuario y servicios con 0,11 Hm³/año (0,01%) y 1,91 Hm³/año (0,2%), respectivamente.

Tabla 3.1.2 Usos del agua subterránea en los acuíferos Valle de Celaya y Valle de Querétaro

	No. de		
Uso	pozos	Vol (Hm³/año)	% Vol
AGRICULTURA	2455	670,92	70%
PÚBLICO URBANO	746	177,67	19%
INDUSTRIAL	126	100.21	10%
MULTIPLES	40	8.35	1%
PECUARIO	1	0.11	0,01%
SERVICIOS	20	1.91	0,2%
TOTAL	3388	959,17	100%

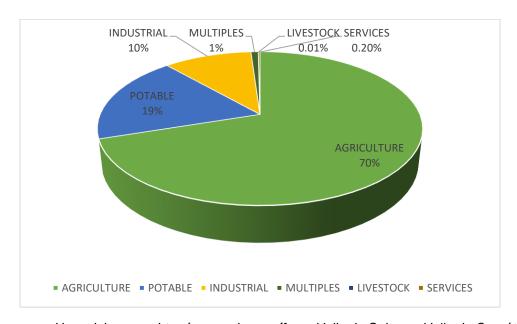


Figura 3.1.4 Usos del agua subterránea en los acuíferos Valle de Celaya y Valle de Querétaro

2) Subcuenca del Río Querétaro

El total de pozos en la subcuenca del Río Querétaro es de 511 con un volumen de extracción total de 134.36 Hm³/año.

En la figura 3.1.5 y Tabla 3.1.3 se muestra el volumen que corresponde a cada uso.

Tabla 3.1.3 Usos del agua subterránea en la Subcuenca del Río Querétaro

Utilizar	Pozos	Vol (Hm³/año)	% Vol
AGRICULTURA	357	105,48	79%
POTABLE	89	19.38	14%
INDUSTRIAL	18	3.86	3%
MULTIPLES	10	2.2	2%
GANADO	26	2.28	2%
SERVICIOS	11	1.16	1%
TOTAL	511	134.36	100%

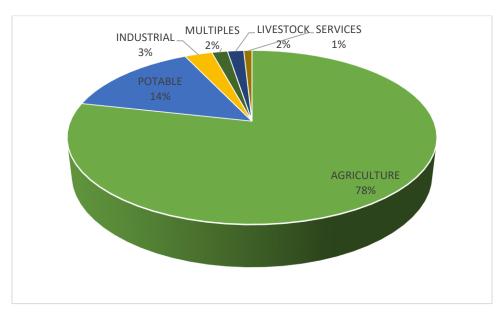


Figura 3.1.5 Usos del agua subterránea en la Subcuenca del Río Querétaro

Análisis de usos de agua en la zona Obrajuelo-Querétaro

En la zona de Obrajuelo-Querétaro resultó en un total de 407 pozos de abastecimiento (Figura 3.1.6).

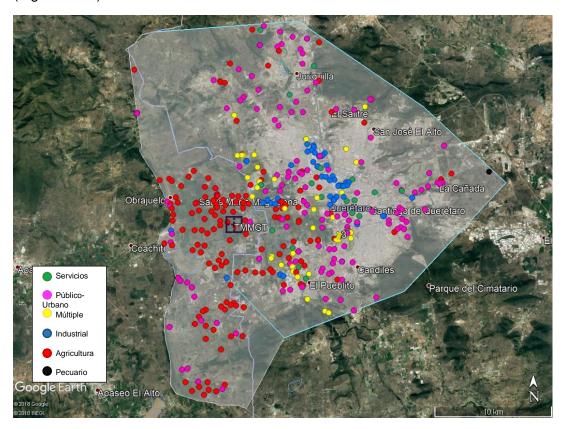


Figura 3.1.6 Usos del agua subterránea en la zona Obrajuelo-Querétaro

En dicha zona se determinó el valor total de extracción de 181.25 Hm³/año.

El uso principal en al que se destina es de uso público-urbano con un valor de 90.26 Hm³/año (50%), el uso para agricultura presenta un volumen de extracción de 63.03 Hm³/año (35%), el uso industrial tiene un volumen de 18.2 Hm³/año (3%), y múltiples, pecuario y servicios 7.74 (4%), 0.11 (0%) y 1.91 Hm³/año (1%), respectivamente.

Los resultados se muestran en la Figura 3.1.7 y Tabla 3.1.4

Tabla 3.1.4 Usos del agua subterránea en la zona de Obrajuelo-Querétaro

Utilizar	Wells	Vol (Hm³)	% Vol
AGRICULTURA	155	63.03	35%
POTABLE	141	90.26	50%
INDUSTRIAL	54	18.2	10%
MULTIPLES	36	7.74	4%
PECUARIO	1	0.11	0%
SERVICIOS	20	1.91	1%
TOTAL	407	181,25	100%

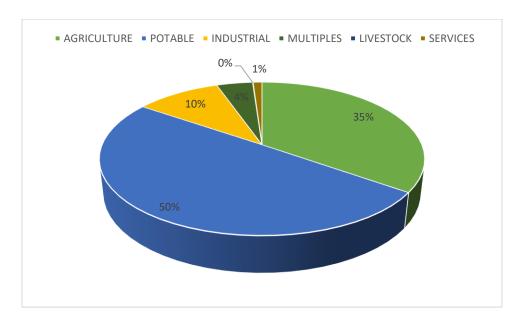


Figura 3.1.7 Usos del agua subterránea en la zona de Obrajuelo-Querétaro

Pero de acuerdo al censo realizado se determinó un volumen de extracción total en la zona de Obrajuelo de 115.66 Hm³/año siendo un volumen menor debido a la instalación de un acueducto en Querétaro que abastece menos agua a la población. Este dato fue contemplado para el balance de aguas subterráneas.

ANÁLISIS DE POZOS DE ABASTECIMIENTO DE OBRAJUELO

Para la zona de Obrajuelo en el estado de Guanajuato se cuenta con un total de 119 aprovechamientos (Figura 3.1.8)

Obrajuelo presenta un volumen total de extracción de 49.17 Hm³/año.

El uso principal en al que se destina es de uso agrícola con un valor de 45.62 Hm³/año (93%), el uso para público-urbano presenta un volumen de extracción de 2.99 Hm³/año (6%) y el uso industrial tiene un volumen de 0.56 Hm³/año (1%).

Los resultados se muestran en la Figura 3.1.9 y Tabla 3.1.5

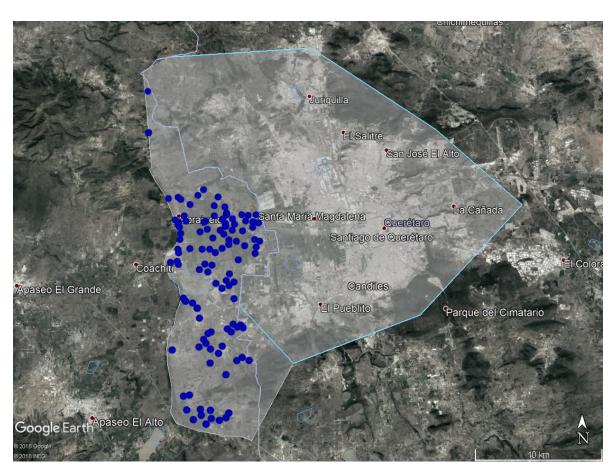


Figura 3.1.8 Usos del agua subterránea en la zona de Obrajuelo

Tabla 3.1.5 Usos del agua subterránea en la zona de Obrajuelo

USO	TOTAL APROVECHAMIENTOS	VOLUMEN (hm³)	% Vol
PÚBLICO-	24	2.99	6%
URBANO			
AGRICOLA	93	45.62	93%
INDUSTRIAL	2	0.56	1%
TOTAL	119	49.17	100%

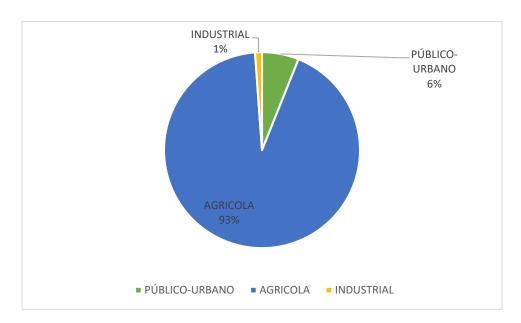


Figura 3.1.9 Usos del agua subterránea en la zona de Obrajuelo

En el Anexo 3.1 se presenta la información de datos completa sobre el censo realizado.

3.2 NIVELACIÓN DE BROCALES

El objetivo que se persigue con esta actividad fue determinar con precisión las elevaciones con respecto al nivel medio del mar de los brocales, punto de medición y terreno natural para el monitoreo piezométrico del acuífero.

Con las técnicas y equipos empleados en este proceso, se obtuvieron las mediciones que permitirán tener una base lo suficientemente confiable para futuras mediciones, ya el control vertical y horizontal se hizo con referencia al Sistema Geodésico Nacional.

Las elevaciones obtenidas están referidas a bancos de nivel de elevaciones conocidas, establecidas por el INEGI, para lo cual se ligaron las bases de GPS a los bancos INEGI, de la Red Geodésica Nacional Activa (RGNA).

Las bases utilizadas fueron las instaladas en la Universidad de Guanajuato y la Universidad de Querétaro (Tabla 3.2.1)

NOMBRE DE LA ESTACIÓN	LATITUD NORTE	LONGITUD OESTE	ALTURA GEODÉSICA (M)
<u>UGTO</u>	21 00 09.75456	101 16 17.99246	2062.282
<u>UQRO</u>	20 35 28.09773	100 24 45.69377	1817.973

Tabla 3.2.1 Estaciones geodésicas

El levantamiento de las coordenadas X, Y, Z de los 30 pozos.se inició de acuerdo a la selección previa mediante recorridos.

A los datos levantados de cada pozo, se les realizó un pos-proceso, ya que los datos crudos se tomaron en formato tipo RINEX. El procesamiento de los datos se realizó con el software Spectrum Survey Office v.7.5, con parámetros de calidad menores a los 0.05 m, por lo cual el punto tiene una precisión de ±5 cm.

Nº CNA	Nombre de pozo	X (UTM)	Y (UTM)	Nivel del brocal (msnm)
999-A	Ejido El Romeral	343449	2271929	1,829.11
612-F	Rcho. La Colmena	344440	2279792	1,803.72
982	Rcho. Las Adjuntas	344744	2278574	1,798.97
609-A	Rcho. El Rincón	345265	2281054	1,806.28
396-A	Mompaní II	345600	2289242	1,921.61

Tabla 3.2.2 Nivelación de brocales

1313-A	Rcho El Rosario	346341	2279716	1,799.25	
2427	Sta. Magdalena III	346893	2279228	1,799.50	
759	Ejido El Nabo	347166	2292086	1,950.33	
629	El Cerrito FRCC. 2	348247	2273979	1,807.54	
1746-A	CEA El Pueblito 2A	349450	2272271	1,805.00	
1978	CEA Loma Bonita	349818	2284988	1,816.52	
628	Rcho. Vanegas	350536	2274107	1,805.25	
967	Cardanes	350591	2281321	1,803.45	
914	CEA Capilla 1	350834	2276380	1,803.06	
1638	Vidriera Qro. Nte.	351229	2280079	1,804.32	
1322	industrial II	351744 2280781		1,800.30	
641-A	CEA Tejeda	351815	2272915	1,809.01	
977-A	Tecnológico	351991	2278559	1,810.75	
1979	OFIC. CEA	352500	2277300	1,808.62	
953	Cantante Mexicana No. 2	352618	2279064	1,807.69	
745	Colegio Fray Luis	353095	2277032	1,813.83	
1639	Instituto San Javier	355293	2278744	1,824.62	
752	Alberca Leticia	358102	2278755	1,840.13	

3.3 ESTUDIOS GEOFÍSICOS

Planificación, diseño y ejecución del estudio de exploración geofísica.

Este estudio de exploración geofísica para la caracterización estructural y geohidrológica de la zona Obrajuelo-Querétaro, comprende la integración de dos métodos geofísicos con diferentes alcances. El primero a escala regional es caracterizado por la técnica TEM, el cual se fundamenta bajo el principio físico de inducción magnética; esto permite conocer la distribución vertical de los materiales que componen el subsuelo a una profundidad de hasta 400 m. El segundo a escala de alta resolución es caracterizado por la técnica TRE, el cual se fundamente bajo el principio físico de corriente directa; esto permite conocer la distribución vertical y en dirección horizontal de los materiales que componen el subsuelo a una profundidad de hasta 40 m.

TRANSITORIO electromagnético (TEM)

El método electromagnético TEM permite conocer la distribución de los materiales que componen el subsuelo, mediante el contraste del parámetro físico "Resistividad". Este contraste resistivo es el reflejo inherente del comportamiento heterogéneo en dirección vertical del subsuelo, el cual es producido por la variación mineralógica existente entre las diferentes formaciones geológicas o unidades estratigráficas. De este modo, las fluctuaciones resistivas permiten delimitar o diferenciar geoespacialmente y en dirección vertical, entre los materiales de composición arcillosa y/o con mayor saturación y los materiales granulares y/o de moderado fracturamiento.

Para definir con certeza los contrastes resistivos asociados a las diferentes unidades hidroestratigráficas y/o estructuras geológicas dominantes en el área de exploración, se estableció que con un Loop de 150 m (escala semi regional) podemos obtener una imagen representativa para una profundidad de hasta **400 m**. Cuya distribución de adquisición se determinó de acuerdo al siguiente objetivo:

- Cortar transversalmente las estructuras asociadas con las fallas normales.
- Definir los contrastes en la dirección vertical asociada con los horizontes de la composición mineralógica variable que componen el subsuelo.

Para la adquisición de los datos de resistividad profundas, se utilizó el sistema TemFast 48 de AEMR. El uso de AWG-14 cables de calibre permitió la adquisición sistemática de datos de resistividad con loop de hasta 150 m. Para asegurar la resolución de contactos laterales

(fallas) y verticales (horizontes), se usó secuencias de arreglo Loop Coincidente; esta configuración mejora la relación señal-ruido.

La ejecución de la geofísica mediante Sondeos por Transitorio Electromagnético consistió en la realización de 23 sondeos de exploración regional, con un loop de 150 m, todos adquiridos con el arreglo Loop Coincidente. La separación entre cada sonido alcanza hasta 1,5 km.

La Figura 3.3.1 presenta la interpretación de las unidades en el subsuelo. Las unidades principales identificados son la reciente de llenado en la parte superior, seguido por andesitas fracturadas y una secuencia de andesita-riolita. La mayoría de los pozos se encuentran en el material de relleno aluvial.

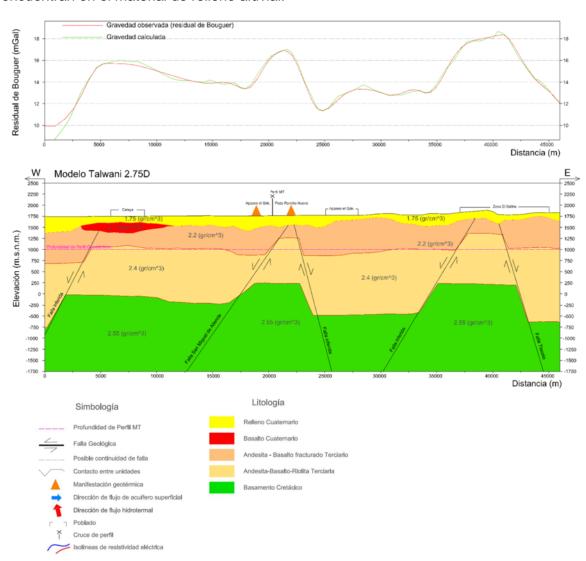


Figura 3.3.1 Sección geofísica de la zona de Celaya-Salitre

Los sondeos electromagnéticos se distribuyeron de tal forma que se cubriera la zona de Obrajuelo (Figura 3.3.2). Los resultados de los sondeos se graficaron en dos secciones (Figuras 3.3.3 y 3.3.4). La resistividad registrada nos muestra la presencia de rocas compactas (tobas y riolitas) a profundidad con valores de resistividad mayores a 100 ohmm (colores rojos), así como de horizontes arcillosos con resistividades muy bajas del orden de 20 ohm-m (colores azules). Las zonas por donde circula el agua corresponde a valores de resistividad entre 20 y 100 ohm-m (colores verdes), y se localizan hacia el centro del valle.

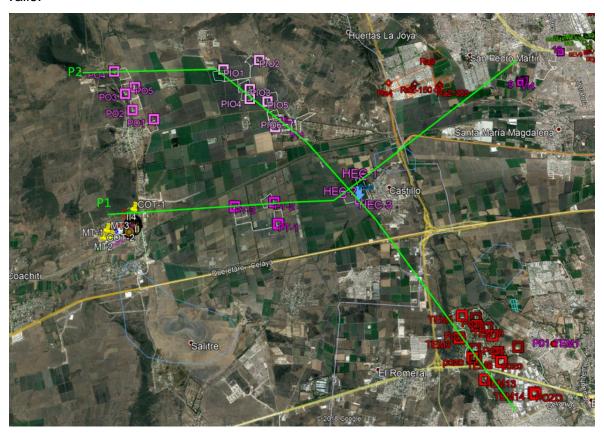


Figura 3.3.2 Localización de puntos de sondeos TEM y secciones geofísicas P1 y P2 en la zona de Obrajuelo

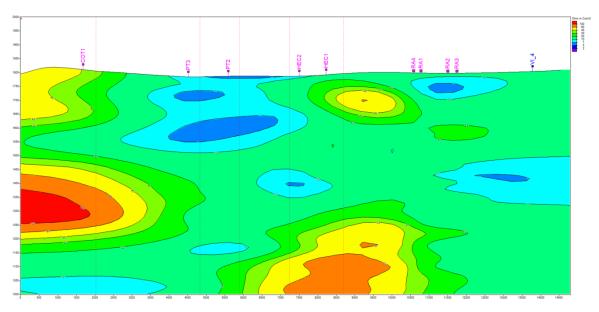


Figura 3.3.3 Sección geofísica P1 (Norte-Sur) zona de Obrajuelo

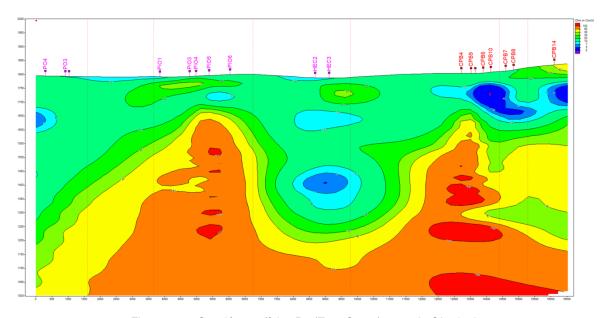


Figura 3.3.4 Sección geofísica P2 (Este-Oeste) zona de Obrajuelo

3.4 ANÁLISIS FISICOQUÍMICOS E ISOTÓPICOS

La recopilación de información de un estudio realizado en el año 2000 de los resultados de parámetros físico-químicos determinados en el laboratorio se presentan en la Tabla 3.4.2, mientras que las determinaciones específicas se muestran en la Tabla 3.4.3.

Tabla 3.5.4 muestra los resultados de las pruebas de deuterio y oxígeno y en la Tabla 3.4.5 el resultados de las pruebas de gases, donde se puede observar que las concentraciones de He y CH₄ fueron no detectables.

De acuerdo con el diagrama de Piper (Figura 3.4.1), la composición general de las muestras es de tipo bicarbonatada.

Los diagramas de Stiff (figuras 3.4.2 a 3.4.15) nos dan una primera información cualitativa y grado de mineralización relativa de las aguas que se encuentran en la zona de los alrededores de El Castillo.

Se puede observar en las figuras que la mayoría de muestras presentan altas concentraciones de iones de bicarbonato. En las muestras con altas concentraciones de sodio (Na) y potasio (K) son indicativos de contaminación por descarga de aguas residuales.

Tabla 3.4.1 Información general de los sitios de muestreo para el análisis físico-químico

				UBICA	CIÓN			
Muestra No.	ID TIPO NOMBRE	NOMBRE	LONG. ESTE	LAT. NOR	TEMP°	рН	E.C. mmhos-cm	
M-1	S/N	MT	SAN BARTOLO	14337444	2268320	90	-	1590
M-5	S/N	MT	ZONA GEOTÉRMICA EL SALITRE	14338884	2273839	90	-	1390
M-6	689 CEAS QRO	Р	EL ROMERAL	14344413	2272560	27.9	7.64	652
M-7	S/N	Р	SAN ANTONIO	14340412	2268695	28.5	8.15	595
M-8	211	Р	A.P. SAN ANTONIO CALICHAR	14341578	2267673	26.4	8.36	627
M-10	L-17 (1)	Р	RANCHO CERCA LA NORITA	14342299	2272757	28.4	8.16	632
M-11	L-225 (R-42)	Р	RANCHO CERCA DE OJO DE AGUA	14340009	2262325	29	8.31	475
M-13	L-235 (1)	Р	RANCHO DE DON ANTONIO	14341490	2261934	31.4	8.11	441
M-14	L-625 (GZA-24)	Р	GRANADAS, EL SABINO	14332135	2264408	33.3	8.1	527
M-16	610-A	Р	QUERÉTARO	14343701	2281078	32.2	8.07	485
M-17	L-3	Р	RANCHO EX HDA. EL CASTILLO	14344133	2276460	31.5	8.04	490
M-18	L-5	Р	EL TEJABAN	14344220	2275337	28.7	8.9	539
M-19	L-27	Р	EJIDO CALERA AMECHE	14343156	2277230	31.2	8.18	462
M-20	L-48	Р	CLUB VALLE VERDE- OBRAJUELO	14342182	2278253	32.3	7.99	482

Table 3.4.2 Resultados de los análisis químicos

		ANÁLISIS QUÍMICOS (mg/L)											
SAMPLE No.	Ca	Mg	Na	K	CO ₃	HCO₃	CI	SO ₄	Alk total	Dca	DMg	D total	STD
M-1	2	0.3	245	14	72	130	103	82	202				785
M-5	1	0.2	226	18	162	70	101	48	232				800
M-6	46	17.9	68	19	0	266	10	69	266				543
M-7	36	24.9	68	16	0	242	12	78	215				522
M-8	39	25	53	11	0	332	9	52	272	97	103	200	515
M-10	41	18	51	11	0	264	24	55	216	102	77	179	480
M-11	19	13	50	8	0	239	5	30	196	48	54	102	392
M-13	17	13	51	8	0	237	6	27	94	42	55	97	380
M-14	28	19	42	12	0	246	6	61	202	70	81	151	430
M-16	26	12	51	8	0	249	3	22	204	64	51	115	375
M-17	24	10	76	7	0	288	10	29	236	60	40	100	430
M-18	34	17	44	8	0	279	12	26	224	86	70	156	430
M-19	12	5	87	4	0	242	12	31	198	30	20	50	395
M-20	29	8	51	9	0	249	6	28	204	72	34	106	410

Table 3.4.3 Resultados de pruebas específicas

		DETERMINACIONES ESPECIALES (mg/L)										
SAMPLE No.	Mn	В	Li	Cd	Cr	Fe	Pb	Zn	F	As	Se	SiO ₂
M-1	0.019	2.941	1.285	no detec.	no detec.	1.438	no detec.	0.028	25.76	0.0059	no detec.	104
M-5	0.002	3.186	10.37	0.005	no detec.	0.074	no detec.	0.024	24.14	0.01	no detec.	145
M-6	0.002	0.105	0.089	0.003	no detec.	0.034	no detec.	0.021	0.455	no detec.	no detec.	46
M-7	0.003	0.097	0.054	0.004	no detec.	0.092	no detec.	0.027	0.587	no detec.	no detec.	54
M-8	< 0.05	< 0.5	< 1			0.06						73
M-10	< 0.05	< 0.5	< 1			0.05						75
M-11	< 0.05	1.1	< 1			0.05						72
M-13	< 0.05	< 0.05	< 1			0.05						72
M-14	< 0.05	1.2	< 1			0.07						73
M-16	< 0.05	0.7	< 1			0.08						75
M-17	< 0.05	0.7	< 1			0.05						86
M-18	< 0.05	< 0.5	< 1			0.05						79
M-19	< 0.05	< 0.5	< 1			< 0.03						62
M-20	< 0.05	< 0.5	< 1			< 0.03						100

Table 3.4.4 Resultados de análisis isotópicos

	CAMPIE			OXYC	SEN 18 (δ	5 %)	DEUTERIUM (δ %)			
SAMPLE No.	ID	TYPE	NAME	F	RETAKE		RETAKE			
M-1	S/N	MT	SAN BARTOLO	-8.49			-77.77	-73.04	-72.91	
M-2							-73.47	-73.24	-73.36	
M-3				-7.59	-7.61	-7.6	-72.86	-73.04	-72.95	
M-4							-73.47	-74.69	-74.08	
M-5	S/N	MT	ZONA GEOTÉRMICA EL SALITRE	-8.54			-72.65	-70.21	-71.43	
M-6	689 CEAS QRO	Р	EL ROMERAL				-70.37	-70.88	-70.63	
M-7	S/N	Р	SAN ANTONIO	-8.7			-71.57	-72.59	-72.08	
M-8	211	Р	A.P. SAN ANTONIO CALICHAR	-8.98			-74.89	-74.42	-74.66	
M-9							-73.21	-72.93	-73.07	
M-10	L-17 (1)	Р	RANCHO CERCA LA NORITA	-8.93	-8.87	-8.9	-71.59	-72.65	-72.12	
M-11	L-255 (R-42)	Р	RANCHO CERCA DE OJO DE AGUA	-9.06			-74.02	-72.63	-73.33	
M-13	L-235 (1)	Р	RANCHO DE DON ANTONIO	-9.22			-74.12	-75.18	-74.65	
M-14	L-625 (GZA-24)	Р	GRANADAS, EL SABINO	-9.1	-9.05	-9.08	-71.63	-72.71	-72.17	
M-15							-74.48	-76.11	-75.3	
M-16	610-A	Р	QUERÉTARO	-9.28			-76.27	-75.81	-76.04	
M-17	L-3	Р	RANCHO EX HDA. EL CASTILLO	-8.63			-70.5	-68.88	-69.69	
M-18	L-5	Р	EL TEJABAN	-8.99			-72.88	-72.32	-72.6	
M-19	L-27	Р	EJIDO CALERA AMECHE				-68.76	-66.73	-67.75	
M-20	L-48	Р	CLUB VALLE VERDE-OBRAJUELO	-9.12			-71.12	-71.95	-71.54	

Tabla 3.4.5 Resultados de análisis de gases

	Análisis de gases						
No. de muestra	N	O ₂	CO ₂	Ar	He	CH4	
M-1					n.d	n.d	
M-5					n.d	n.d	
M-6					n.d	n.d	
M-7					n.d	n.d	
M-8	9.2	6	48	0.4	n.d	n.d	
M-10	11	7.2	32	0.5	n.d	n.d	
M-11	10.4	6.8	22	0.5	n.d	n.d	
M-13	10.7	7	34	0.5	n.d	n.d	
M-14	10.7	7	44	0.5	n.d	n.d	
M-16	9.8	6.4	36	0.4	n.d	n.d	
M-17	11.5	7.5	51	0.5	n.d	n.d	
M-18	9.8	6.4	49	0.4	n.d	n.d	
M-19	11.6	7.6	23	0.5	n.d	n.d	
M-20	11.9	7.8	9	0.5	n.d	n.d	

Figura 3.4.1 Diagrama de Stiff M-1

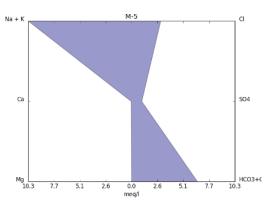


Figura 3.4.2 Diagrama de Stiff M-5

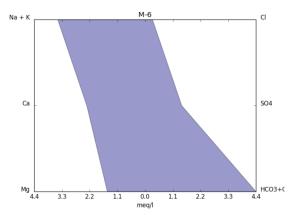


Figura 3.4.3 Diagrama de Stiff M-6

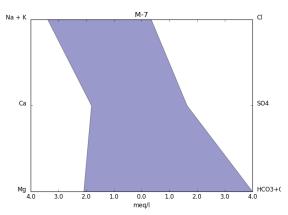


Figura 3.4.4 Diagrama de Stiff M-7

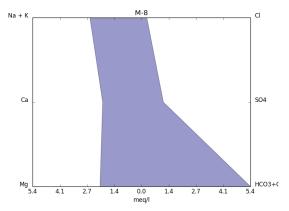


Figura 3.4.5 Diagrama de Stiff M-8

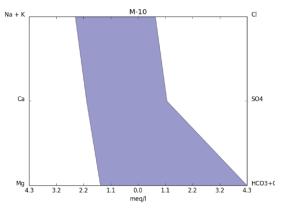


Figura 3.4.6 Diagrama de Stiff M-10

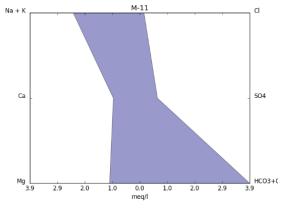


Figura 3.4.7 Diagrama de Stiff M-11

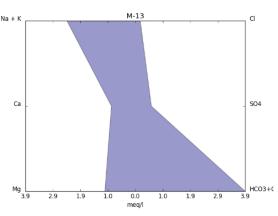


Figura 3.4.8 Diagrama de Stiff M-13

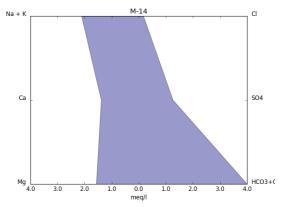


Figura 3.4.9 Diagrama de Stiff M-14

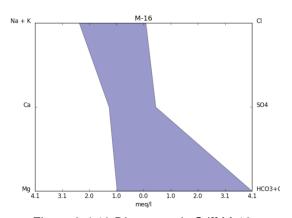


Figura 3.4.10 Diagrama de Stiff M-16

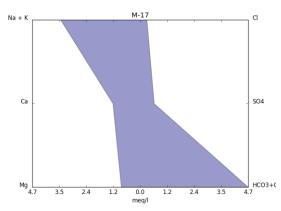


Figura 3.4.11 Diagrama de Stiff M-17

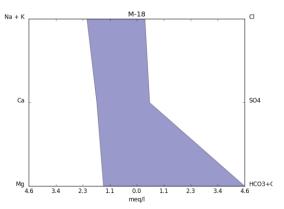


Figura 3.4.12 Diagrama de Stiff M-18

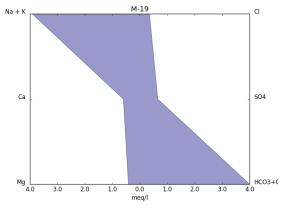


Figura 3.4.13 Diagrama de Stiff M-19

Figura 3.4.14 Diagrama de Stiff M-20

3.5 DETERMINACIÓN DE PARÁMETROS HIDROGEOQUÍMICOS DE CAMPO

Con el fin de identificar los procesos que controlan la evolución geoquímica de las aguas subterráneas en la zona de Obrajuelo-Querétaro, se muestrearon 20 pozos de abastecimiento (10 en Obrajuelo y 10 en Querétaro aledaños al predio de Toyota).

Los parámetros físicos medidos en campo fueron pH, temperatura, conductividad eléctrica, sólidos disueltos totales, potencial redox, Oxígeno disuelto y alcalinidad.

Figura 3.5.1. Equipo utilizado para la determinación de los parámetros de campo

Figura 3.5.2 Colecta de muestras en la visita de campo

En los meses de octubre y mayo del presente año, se realizaron campañas de muestreo para la actualización de la información de los parámetros fisicoquímicos en la zona de Obrajuelo-Querétaro.

Para el monitoreo se consideraron parámetros de campo, parámetros fisicoquímicos y microbiológicos. Las muestras de agua se recolectaron siguiendo los protocolos existentes, los cuales están detallados en Boulding (1995), así como los procedimientos expuestos en la norma NOM-230-SSA1-2002 (DOF 2003), que sigue los lineamientos de la APHA, AWW y WEF (2005).

Se tomaron dos muestras de agua, una se recolectó para el análisis de aniones y otra para el análisis de cationes mayoritarios y elementos minoritarios, la cual fue preservada con ácido nítrico hasta un pH menor o igual a 2. Las muestras para el análisis microbiológico se recolectaron por duplicado en bolsas de plástico estériles y en este caso no se consideró la adición de tiosulfato de sodio por que la muestra se tomó antes del clorador. En una botella de 125 ml se tomó muestra para el análisis de dureza total. Todas las muestras fueron almacenadas en frigorífico (4°C) hasta su análisis. En laboratorio se llevaron a cabo las determinaciones que se presentan en la *Tabla 3.5.1*.

Tabla 3.5.1. Parámetros de campo y análisis de laboratorio

Parámetros	·	Técnica/equipo
Campo		Sonda Multiparamétrica Hanna
	Temperatura	9828 CB-29586
	рН	
-	Conductividad eléctrica	
	SDT	
	Potencial de óxido-reducción	
Fisicoquímicos		
Aniones	CO ₃ ²⁻ ,F ⁻ , Cl ⁻ ,NO ₃ ⁻ , Br ⁻ , PO ₄ ²⁻	Cromatografía de Líquidos de alto
	HCO ₃ - y SO ₄ 2-	desempeño (HPLC)
		Equipo: Dionex ICS-2500 HPLC/IC.
Cationes	Al, As, Ba, Be, Bi, Ca, Cd,	Espectrometría de emisión óptica con
	Co, Cr, Cu, Fe, K, Li, Mg, Mn,	plasma acoplado por inducción (ICP-
	Mo, Na, Ni, P, Pb, S, Sb, Se,	OES)
	Si, Sr, Tl y Zn	Equipo: Thermo iCAP 6500 Duo View.

Para llevar a cabo la medición de los parámetros de campo (temperatura, pH, potencial de óxido-reducción (Eh), conductividad eléctrica y sólidos totales disueltos) se utilizó una celda de aislamiento, que limita la interacción del agua subterránea con la atmósfera, evitando en

gran medida que la muestra disuelva oxígeno y se escape bióxido de carbono (previo a la medición).

Cálculo del índice CCME WQI

El índice de calidad del agua se calcula mediante tres factores, que son los componentes del índice; el cálculo de F1 y F2 es relativamente sencillo; pero en el caso de F3 se requieren algunos pasos adicionales. A continuación se describen los pasos para el cálculo de los componentes y finalmente del índice.

Factor 1: Ámbito de aplicación

F1 (Ámbito de aplicación) representa el porcentaje de variables (parámetros) que no cumplen con los objetivos por lo menos una vez durante el período de tiempo considerado (" variables que no cumplen "), relativo al número total de variables analizadas (CCME, 2001):

$$F_{\rm l} = \left(\frac{{\rm N\'umero~de~varibles~que~no~cumplen~el~objetivo}}{{\rm N\'umero~Total~de~Varibles}}\right) x 100$$
 Ecuación 1

Donde las **variables** indican la calidad del agua para los objetivos definidos durante el período de tiempo que se calcula de índice.

Factor 2: Frecuencia

F2 (Frecuencia) representa el porcentaje de cada una de las pruebas (aprovechamiento) que no cumplen los objetivos ("pruebas que no cumplen") (CCME, 2001):

$$F_2 = \left(\frac{\text{N\'umero de pruebas que no cumplen}}{\text{N\'umero Total de Pruebas}}\right) x 100$$
 Ecuación 2

Factor 3: Amplitud

F3 (amplitud) representa la suma total de cada una de las pruebas (aprovechamiento) que no cumple los objetivos. F3 se calcula en tres pasos (CCME, 2001).

(i) El número de veces que una concentración individual es mayor (ecuación 3) que o menor (ecuación 2) que el objetivo. Se denomina "Desviación anómala" y se expresa de dos maneras:

desviación anómala
$$_i = \left(\frac{\text{Número de pruebas que no cumplen}}{\text{Objetivo}_{j}}\right) - 1$$

$$\text{Ecuación 3}$$

$$\text{desviación anómala }_i = \left(\frac{\text{Objetivo}_{j}}{\text{Número de pruebas que no cumplen}}\right) - 1$$

$$\text{Ecuación 4}$$

(ii) La suma total de los datos de las pruebas individuales que están fuera del rango, y que son calculados al sumar las desviaciones anómalas de las pruebas individuales para los objetivos de la evaluación, se divide entre el número total de pruebas (tanto las que cumplen los objetivos como los que no los cumplen). Esta variable se denomina suma normalizada o suma de la desviación anómala, o NSE, y se calcula como (CCME, 2001):

$$NSE = \frac{\sum_{i=1}^{n} desviación \text{ anómala}}{\text{no. total de pruebas}}$$
 Ecuación 5

(iii) F3 se calcula por medio de una función asintótica de escalas normalizadas y la suma de la desviación anómala de objetivos (NSE), para obtener un rango entre 0 y 100 (CCME, 2001).

$$F_3 = \frac{NSE}{0.01 \ NSE + 0.01}$$
 Ecuación 6

El índice CCME WQI se calcula como:

$$CCMEWQI = 100 - \frac{\sqrt{F_1^2 + F_2^2 + F_3^2}}{1.732}$$
 Ecuación 7

Una vez que el valor del índice se calcula, la calidad del agua se puede clasificar conforme a la siguiente escala (CCME, 2001):

> Excelente: (CCME WQI Valor 95-100)

➤ Buena: (CCME WQI Valor 80-94)

Regular: (CCME WQI Valor 65-79)

Contaminada: (CCME WQI Valor 45-64) - agua contaminada.

Muy Contaminada: (CCME WQI Valor 0-44) - agua de muy baja calidad.

Aplicación del índice

La evaluación de la calidad del agua se aplicó en los datos hidrogeoquímicos obtenidos del muestreo y análisis del agua aplicando el índice CCME WQI (CCME, 2001) para uso y consumo humano que se detallan en la norma mexicana NOM-127-SSA1-1994 "Salud ambiental. Agua para uso y consumo humano modificada en el año 2000 (DOF, 2000).

Los parámetros considerados fueron:

- pH
- SDT
- Nitratos
- Sulfatos
- Cloruros
- Sodio
- Dureza total
- Hierro
- Arsénico
- Zinc
- Cobre
- Bario
- Plomo

Para la evaluación se consideraron seis parámetros de los definidos en la NOM-127-SSA1-1994 (SSA, 2004). Estos parámetros representan los objetivos o criterios de calidad utilizados para evaluar el índice y se detallan en la *Tabla 3.5.2*.

Tabla 3.5.2. Objetivos utilizados para la evaluación del índice de calidad para uso y consumo humano

	Objetivo (parámetro	Unidades	NOM-127-SSA1-1994
	a evaluar)		
1	рН	6.5-8.5	unidades
2	SDT	1000	mg/L
3	Nitratos	33	mg/L
4	Sulfatos	250	mg/L
5	Cloruros	250	mg/L
6	Sodio	200	mg/L
7	Dureza total	100	mg/L
8	Hierro	0.1	mg/L
9	Arsénico	0.01	mg/L
10	Zinc	5	mg/L
11	Cobre	1	mg/L
12	Bario	0.7	mg/L
13	Plomo	0.01	mg/L

Los resultados obtenidos en relación con la estimación del índice de calidad del agua se presentan en la *Figura 3.5.3* y *Tabla 3.5.3*. Con base en estos resultados se observa que la calidad del agua de los pozos evaluados con la norma oficial mexicana NOM-127-SSA1-1994 va de contaminada a buena (62.4 a 93.1), con 1 contaminada, 3 con calidad regular y 16 de buena calidad. Los parámetros que sobrepasan los criterios son dureza total y plomo.

Tabla 3.5.3. Resultados del índice de calidad CCME_WQI para uso y consumo humano

Pozos	CCME-
	WQI
Ixtla	77.1
Castillo 150m	79.1
Castillo 200m	69.6
Ftes Balvanera	85.2
La Estancia	85.1
Sn Jose Olvera2	92.5
San Francisco	93.1
Don Manuel	93.2
Santa Fe	86.8
Calera de Obrajuelos	92.0
Granja Pollos	93.6
Punta de Obrajuelo	87.4
La Norita	62.4
Sn Pedro Martir 1-Bis	93.6

Poniente 1	86.2
Zapata	79.3
Poniente 4	93.1
Pueblito 2	83.1
Manantial el Salitre	85.2
el Romeral	92.0
Los Olvera 2	92.4

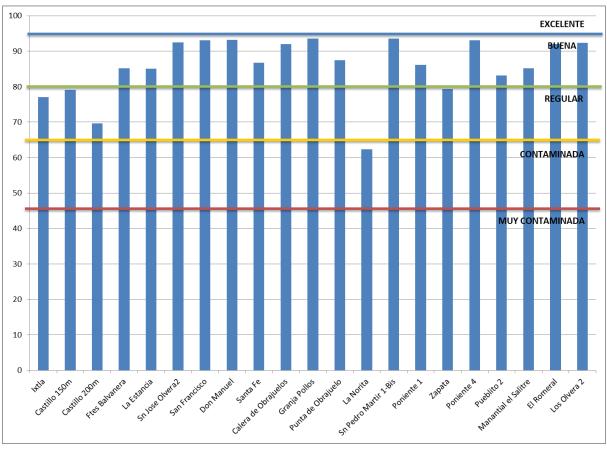


Figura 3.5.3 Resultados del CCME-WQI

CLASIFICACIÓN HIDROGEOQUÍMICA DEL AGUA SUBTERRÁNEA

De acuerdo al diagrama de Piper de la *Figura 3.5.4* en el área de estudio se encuentran varias familias de agua, que se clasifican principalmente como: 2 Bicarbonatada cálcica (Ca-HCO₃), 14 bicarbonatada sódica (Na-HCO₃), 3 Sódica clorurada (Na-Cl) y 2 Sulfatada sódica (Na-SO₄).

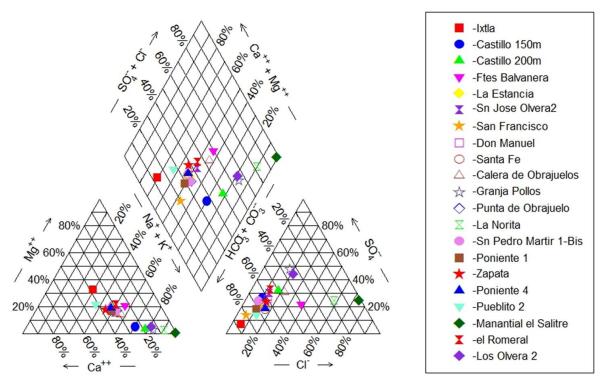


Figura 3.5.4 Diagrama de Piper

3.5.1 ANÁLISIS DE PARÁMETROS QUÍMICOS

Table 3.5.4 Resultados de parámetros guímicos (Octubre 2017-Mayo 2018)

Table 3.5.4 Resultados de parametros químicos (Octubre 2017-Mayo 2018)													
No	POZO	Х	Y	Altura (m)	Temperatura (°C)	pН	C.E. (µS/cm)	/cm) (mg/L)		Redox Zobell (mV)	Alcalinidad	Fecha de Muestreo	Uso
1	Calera Obrajuelo	337812	2275314	1791	32.1	32.1 7.44 772 3.7 519 215.5 218		24-oct-17	Agua potable				
2	Manantial termal Laguna Salitre				58.5	8.28	989		213	184	213	24-oct-17	Agua potable
3	Punta de Obrajuelo	341712	2278761	1800	31.2	7.52	543	5.6	202	216	192	25-oct-17	
4	A.P. La Norita	341389	2273718	1790	43.7	6.97	1080	0.9	-207	197	288	25-oct-17	
5	Don Manuel				29.7	7.74	674	6.4	135	218	200	26-oct-17	
6	San Miguel Ixtla	334496	2284596	1888	29.9	7.35	726	3.7				11-abr-18	Agua potable
7	Granja Quanni	339712	2280751		40.5	7.87	472	2.7				11-abr-18	
8	San Bartolome/ Parcela Ejido San Juan Llanito	338027	2268439	1795	43.5	8.32	1111	2.2				11-abr-18	
9	La Estancia, Gto.	343524	2274078	1820	27.3	7.74	516	3.5				11-abr-18	Surte pipas
10	Fuentes Balvanara CAVESO	340697	2272157	1788	33.1	7.54	1090	3.8				11-abr-18	Agua potable
11	CEA Qro. Santa Fe	349378	2276970	1806	29	7.52	677	3.3	343	226		08-may-18	
12	CEA Qro. Poniente 4	350248	2276663	1804	29.2	7.57	634	4.5	247.6	2.25		08-may-18	
13	CEA Qro. San Pedro Martir 1-BIS	346894	2280236	1806	32.2	7.48	537	4.4	297	220		08-may-18	
14	Ejido Romeral Qro.	344153	2272218	1835	29.8	7.84	730	4.8	256			08-may-18	
15	CEA Qro. Pueblito 2 Garza	349448	2272279	1817	29.5	7.7	665	5.7	296	226		08-may-18	
16	CEA Qro. San José de los Olvera 2	352506	2273910	1809	31.6	7.73	510	4.6	175	223		08-may-18	
17	CEA Qro. Los Olvera 2	351534	2271793	1816	38	7.83	652	5.1	163	215		09-may-18	
18	CEA Qro. San Francisco Corregidora	353751	2267773	1989	27.9	7.96	501	5.2	193	227		09-may-18	
19	CEA Qro. Poniente 1	347775	2275764	1806	30.1	7.65	575	3.2	172	227		09-may-18	
20	CEA Qro. Zapata	349406	2274513	1810	29.4	7.77	617	4.5	175.8	227		09-may-18	
21	Manantial termal Salitre	338495	2271335	1796	100	9.06	1005	0.8	-370	200		09-may-18	

Tabla 3.5.5 Resultados de calidad del agua en mg/l

No	POZO	Li	Na	Mg	K	Ca	Al	As	В	Ва	Cu	Fe	Mn	Мо	Ni	Р	Pb	Si	Sr	٧	Zn	S
1	San Miguel Ixtla	0.026	49.506	31.609	7.448	60.272	0.007	<l.c.< th=""><th>0.005</th><th>0.011</th><th>0.002</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.011</th><th>36.246</th><th>0.617</th><th>0.030</th><th>0.513</th><th>6.381</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.005	0.011	0.002	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.011</th><th>36.246</th><th>0.617</th><th>0.030</th><th>0.513</th><th>6.381</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.011</th><th>36.246</th><th>0.617</th><th>0.030</th><th>0.513</th><th>6.381</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.011</th><th>36.246</th><th>0.617</th><th>0.030</th><th>0.513</th><th>6.381</th></l.c.<></th></l.c.<>	0.018	<l.c.< th=""><th>0.011</th><th>36.246</th><th>0.617</th><th>0.030</th><th>0.513</th><th>6.381</th></l.c.<>	0.011	36.246	0.617	0.030	0.513	6.381
2		0.264	87.535	3.403	8.314	27.960	0.047	<l.c.< th=""><th>0.179</th><th>0.019</th><th>0.090</th><th>0.479</th><th>0.013</th><th><l.c.< th=""><th>0.023</th><th><l.c.< th=""><th>0.017</th><th>44.211</th><th>0.213</th><th>0.020</th><th>0.154</th><th>9.902</th></l.c.<></th></l.c.<></th></l.c.<>	0.179	0.019	0.090	0.479	0.013	<l.c.< th=""><th>0.023</th><th><l.c.< th=""><th>0.017</th><th>44.211</th><th>0.213</th><th>0.020</th><th>0.154</th><th>9.902</th></l.c.<></th></l.c.<>	0.023	<l.c.< th=""><th>0.017</th><th>44.211</th><th>0.213</th><th>0.020</th><th>0.154</th><th>9.902</th></l.c.<>	0.017	44.211	0.213	0.020	0.154	9.902
3		0.211	80.561	1.926	6.183	17.350	0.018	<l.c.< th=""><th>0.200</th><th>0.016</th><th>0.088</th><th>1.102</th><th>0.032</th><th><l.c.< th=""><th>0.019</th><th>0.061</th><th>0.016</th><th>28.324</th><th>0.127</th><th><l.c.< th=""><th>0.206</th><th>9.372</th></l.c.<></th></l.c.<></th></l.c.<>	0.200	0.016	0.088	1.102	0.032	<l.c.< th=""><th>0.019</th><th>0.061</th><th>0.016</th><th>28.324</th><th>0.127</th><th><l.c.< th=""><th>0.206</th><th>9.372</th></l.c.<></th></l.c.<>	0.019	0.061	0.016	28.324	0.127	<l.c.< th=""><th>0.206</th><th>9.372</th></l.c.<>	0.206	9.372
4	Fuentes Balvanara CAVESO	0.282	121.739	25.840	18.035	46.821	0.007	<l.c.< th=""><th>1.987</th><th>0.010</th><th><l.c.< th=""><th>0.006</th><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.806</th><th>0.723</th><th>0.042</th><th>0.236</th><th>27.392</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	1.987	0.010	<l.c.< th=""><th>0.006</th><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.806</th><th>0.723</th><th>0.042</th><th>0.236</th><th>27.392</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.006	<l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.806</th><th>0.723</th><th>0.042</th><th>0.236</th><th>27.392</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.806</th><th>0.723</th><th>0.042</th><th>0.236</th><th>27.392</th></l.c.<></th></l.c.<>	0.017	<l.c.< th=""><th>0.011</th><th>37.806</th><th>0.723</th><th>0.042</th><th>0.236</th><th>27.392</th></l.c.<>	0.011	37.806	0.723	0.042	0.236	27.392
5	La Estancia, Gto.	0.094	53.295	10.454	12.133	33.743	0.005	<l.c.< th=""><th>0.062</th><th>0.005</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>35.826</th><th>0.240</th><th>0.025</th><th>0.277</th><th>11.601</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.062	0.005	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>35.826</th><th>0.240</th><th>0.025</th><th>0.277</th><th>11.601</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>35.826</th><th>0.240</th><th>0.025</th><th>0.277</th><th>11.601</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>35.826</th><th>0.240</th><th>0.025</th><th>0.277</th><th>11.601</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>35.826</th><th>0.240</th><th>0.025</th><th>0.277</th><th>11.601</th></l.c.<></th></l.c.<>	0.017	<l.c.< th=""><th>0.010</th><th>35.826</th><th>0.240</th><th>0.025</th><th>0.277</th><th>11.601</th></l.c.<>	0.010	35.826	0.240	0.025	0.277	11.601
6	CEA Qro. San José de los Olvera 2	0.091	52.764	9.484	11.356	31.826	0.005	<l.c.< th=""><th>0.042</th><th>0.003</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>36.976</th><th>0.222</th><th>0.029</th><th>0.329</th><th>17.520</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.042	0.003	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>36.976</th><th>0.222</th><th>0.029</th><th>0.329</th><th>17.520</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>36.976</th><th>0.222</th><th>0.029</th><th>0.329</th><th>17.520</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>36.976</th><th>0.222</th><th>0.029</th><th>0.329</th><th>17.520</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>36.976</th><th>0.222</th><th>0.029</th><th>0.329</th><th>17.520</th></l.c.<></th></l.c.<>	0.018	<l.c.< th=""><th>0.010</th><th>36.976</th><th>0.222</th><th>0.029</th><th>0.329</th><th>17.520</th></l.c.<>	0.010	36.976	0.222	0.029	0.329	17.520
7	CEA Qro. San Francisco Corregidora	0.036	54.759	9.726	14.176	31.438	0.009	<l.c.< th=""><th>0.016</th><th>0.022</th><th>0.003</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>33.951</th><th>0.333</th><th>0.030</th><th>0.432</th><th>5.234</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.016	0.022	0.003	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>33.951</th><th>0.333</th><th>0.030</th><th>0.432</th><th>5.234</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>33.951</th><th>0.333</th><th>0.030</th><th>0.432</th><th>5.234</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.010</th><th>33.951</th><th>0.333</th><th>0.030</th><th>0.432</th><th>5.234</th></l.c.<></th></l.c.<>	0.017	<l.c.< th=""><th>0.010</th><th>33.951</th><th>0.333</th><th>0.030</th><th>0.432</th><th>5.234</th></l.c.<>	0.010	33.951	0.333	0.030	0.432	5.234
8	Don Manuel	0.114	64.670	13.498	12.411	43.306	0.015	<l.c.< th=""><th>0.082</th><th>0.020</th><th>0.002</th><th>0.010</th><th><l.c.< th=""><th><l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.010</th><th>33.220</th><th>0.491</th><th>0.031</th><th>0.101</th><th>22.049</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.082	0.020	0.002	0.010	<l.c.< th=""><th><l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.010</th><th>33.220</th><th>0.491</th><th>0.031</th><th>0.101</th><th>22.049</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.010</th><th>33.220</th><th>0.491</th><th>0.031</th><th>0.101</th><th>22.049</th></l.c.<></th></l.c.<>	0.015	<l.c.< th=""><th>0.010</th><th>33.220</th><th>0.491</th><th>0.031</th><th>0.101</th><th>22.049</th></l.c.<>	0.010	33.220	0.491	0.031	0.101	22.049
9	CEA Qro. Santa Fe	0.218	73.467	17.952	12.351	44.612	0.010	<l.c.< th=""><th>0.063</th><th>0.019</th><th>0.002</th><th>0.004</th><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.012</th><th>36.204</th><th>0.341</th><th>0.022</th><th>0.621</th><th>14.494</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.063	0.019	0.002	0.004	<l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.012</th><th>36.204</th><th>0.341</th><th>0.022</th><th>0.621</th><th>14.494</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.012</th><th>36.204</th><th>0.341</th><th>0.022</th><th>0.621</th><th>14.494</th></l.c.<></th></l.c.<>	0.017	<l.c.< th=""><th>0.012</th><th>36.204</th><th>0.341</th><th>0.022</th><th>0.621</th><th>14.494</th></l.c.<>	0.012	36.204	0.341	0.022	0.621	14.494
10	Calera Obrajuelo	0.196	89.957	12.479	12.059	43.060	0.005	<l.c.< th=""><th>0.451</th><th>0.006</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.009</th><th>35.017</th><th>0.404</th><th>0.026</th><th>0.547</th><th>28.675</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.451	0.006	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.009</th><th>35.017</th><th>0.404</th><th>0.026</th><th>0.547</th><th>28.675</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.009</th><th>35.017</th><th>0.404</th><th>0.026</th><th>0.547</th><th>28.675</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.009</th><th>35.017</th><th>0.404</th><th>0.026</th><th>0.547</th><th>28.675</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.009</th><th>35.017</th><th>0.404</th><th>0.026</th><th>0.547</th><th>28.675</th></l.c.<></th></l.c.<>	0.017	<l.c.< th=""><th>0.009</th><th>35.017</th><th>0.404</th><th>0.026</th><th>0.547</th><th>28.675</th></l.c.<>	0.009	35.017	0.404	0.026	0.547	28.675
11	Granja Quanni	0.159	89.233	1.517	5.750	13.103	0.021	<l.c.< th=""><th>0.195</th><th>0.004</th><th>0.003</th><th>0.013</th><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.013</th><th>37.673</th><th>0.090</th><th>0.034</th><th>0.064</th><th>15.282</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.195	0.004	0.003	0.013	<l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.013</th><th>37.673</th><th>0.090</th><th>0.034</th><th>0.064</th><th>15.282</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.013</th><th>37.673</th><th>0.090</th><th>0.034</th><th>0.064</th><th>15.282</th></l.c.<></th></l.c.<>	0.018	<l.c.< th=""><th>0.013</th><th>37.673</th><th>0.090</th><th>0.034</th><th>0.064</th><th>15.282</th></l.c.<>	0.013	37.673	0.090	0.034	0.064	15.282
12	Punta de Obrajuelo	0.095	57.605	10.863	11.606	31.661	0.008	<l.c.< th=""><th>0.097</th><th>0.010</th><th>0.020</th><th>0.002</th><th><l.c.< th=""><th><l.c.< th=""><th>0.016</th><th><l.c.< th=""><th>0.011</th><th>34.240</th><th>0.373</th><th>0.037</th><th>0.187</th><th>13.490</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.097	0.010	0.020	0.002	<l.c.< th=""><th><l.c.< th=""><th>0.016</th><th><l.c.< th=""><th>0.011</th><th>34.240</th><th>0.373</th><th>0.037</th><th>0.187</th><th>13.490</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.016</th><th><l.c.< th=""><th>0.011</th><th>34.240</th><th>0.373</th><th>0.037</th><th>0.187</th><th>13.490</th></l.c.<></th></l.c.<>	0.016	<l.c.< th=""><th>0.011</th><th>34.240</th><th>0.373</th><th>0.037</th><th>0.187</th><th>13.490</th></l.c.<>	0.011	34.240	0.373	0.037	0.187	13.490
13	A.P. La Norita	0.915	201.359	3.495	16.866	13.869	0.019	0.028	3.119	0.129	<l.c.< th=""><th>0.637</th><th>0.036</th><th><l.c.< th=""><th>0.010</th><th><l.c.< th=""><th><l.c.< th=""><th>22.263</th><th>0.225</th><th><l.c.< th=""><th>0.123</th><th>19.861</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.637	0.036	<l.c.< th=""><th>0.010</th><th><l.c.< th=""><th><l.c.< th=""><th>22.263</th><th>0.225</th><th><l.c.< th=""><th>0.123</th><th>19.861</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.010	<l.c.< th=""><th><l.c.< th=""><th>22.263</th><th>0.225</th><th><l.c.< th=""><th>0.123</th><th>19.861</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>22.263</th><th>0.225</th><th><l.c.< th=""><th>0.123</th><th>19.861</th></l.c.<></th></l.c.<>	22.263	0.225	<l.c.< th=""><th>0.123</th><th>19.861</th></l.c.<>	0.123	19.861
14	CEA Qro. San Pedro Martir 1-BIS	0.098	57.355	10.693	11.226	33.000	0.017	<l.c.< th=""><th>0.053</th><th>0.018</th><th>0.003</th><th>0.006</th><th><l.c.< th=""><th><l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.008</th><th>32.341</th><th>0.412</th><th>0.036</th><th>0.388</th><th>12.936</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.053	0.018	0.003	0.006	<l.c.< th=""><th><l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.008</th><th>32.341</th><th>0.412</th><th>0.036</th><th>0.388</th><th>12.936</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.008</th><th>32.341</th><th>0.412</th><th>0.036</th><th>0.388</th><th>12.936</th></l.c.<></th></l.c.<>	0.015	<l.c.< th=""><th>0.008</th><th>32.341</th><th>0.412</th><th>0.036</th><th>0.388</th><th>12.936</th></l.c.<>	0.008	32.341	0.412	0.036	0.388	12.936
15	CEA Qro. Poniente 1	0.120	59.047	11.770	12.172	39.113	0.004	<l.c.< th=""><th>0.050</th><th>0.010</th><th>0.002</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.909</th><th>0.259</th><th>0.027</th><th>0.584</th><th>10.856</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.050	0.010	0.002	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.909</th><th>0.259</th><th>0.027</th><th>0.584</th><th>10.856</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.909</th><th>0.259</th><th>0.027</th><th>0.584</th><th>10.856</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.017</th><th><l.c.< th=""><th>0.011</th><th>37.909</th><th>0.259</th><th>0.027</th><th>0.584</th><th>10.856</th></l.c.<></th></l.c.<>	0.017	<l.c.< th=""><th>0.011</th><th>37.909</th><th>0.259</th><th>0.027</th><th>0.584</th><th>10.856</th></l.c.<>	0.011	37.909	0.259	0.027	0.584	10.856
16	CEA Qro. Zapata	0.117	56.840	12.948	12.640	45.534	0.005	<l.c.< th=""><th>0.049</th><th>0.008</th><th>0.002</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>37.636</th><th>0.285</th><th>0.026</th><th>0.437</th><th>19.519</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.049	0.008	0.002	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>37.636</th><th>0.285</th><th>0.026</th><th>0.437</th><th>19.519</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>37.636</th><th>0.285</th><th>0.026</th><th>0.437</th><th>19.519</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>37.636</th><th>0.285</th><th>0.026</th><th>0.437</th><th>19.519</th></l.c.<></th></l.c.<>	0.018	<l.c.< th=""><th>0.010</th><th>37.636</th><th>0.285</th><th>0.026</th><th>0.437</th><th>19.519</th></l.c.<>	0.010	37.636	0.285	0.026	0.437	19.519
17	CEA Qro. Poniente 4	0.158	64.521	15.137	12.204	42.468	0.015	<l.c.< th=""><th>0.055</th><th>0.005</th><th>0.002</th><th>0.009</th><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>38.394</th><th>0.287</th><th>0.023</th><th>0.506</th><th>13.956</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.055	0.005	0.002	0.009	<l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>38.394</th><th>0.287</th><th>0.023</th><th>0.506</th><th>13.956</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.010</th><th>38.394</th><th>0.287</th><th>0.023</th><th>0.506</th><th>13.956</th></l.c.<></th></l.c.<>	0.018	<l.c.< th=""><th>0.010</th><th>38.394</th><th>0.287</th><th>0.023</th><th>0.506</th><th>13.956</th></l.c.<>	0.010	38.394	0.287	0.023	0.506	13.956
18	CEA Qro. Pueblito 2 Garza	0.078	50.681	18.175	14.722	58.014	0.007	<l.c.< th=""><th>0.032</th><th>0.010</th><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.009</th><th>38.315</th><th>0.476</th><th>0.020</th><th>0.411</th><th>11.738</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.032	0.010	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.009</th><th>38.315</th><th>0.476</th><th>0.020</th><th>0.411</th><th>11.738</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.009</th><th>38.315</th><th>0.476</th><th>0.020</th><th>0.411</th><th>11.738</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th><l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.009</th><th>38.315</th><th>0.476</th><th>0.020</th><th>0.411</th><th>11.738</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.018</th><th><l.c.< th=""><th>0.009</th><th>38.315</th><th>0.476</th><th>0.020</th><th>0.411</th><th>11.738</th></l.c.<></th></l.c.<>	0.018	<l.c.< th=""><th>0.009</th><th>38.315</th><th>0.476</th><th>0.020</th><th>0.411</th><th>11.738</th></l.c.<>	0.009	38.315	0.476	0.020	0.411	11.738
19	Manantial termal Salitre	1.399	200.360	0.360	12.288	0.795	0.342	<l.c.< th=""><th>3.406</th><th>0.002</th><th><l.c.< th=""><th>0.012</th><th><l.c.< th=""><th><l.c.< th=""><th>0.045</th><th><l.c.< th=""><th>0.023</th><th>100.331</th><th>0.057</th><th><l.c.< th=""><th>0.295</th><th>275.271</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	3.406	0.002	<l.c.< th=""><th>0.012</th><th><l.c.< th=""><th><l.c.< th=""><th>0.045</th><th><l.c.< th=""><th>0.023</th><th>100.331</th><th>0.057</th><th><l.c.< th=""><th>0.295</th><th>275.271</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.012	<l.c.< th=""><th><l.c.< th=""><th>0.045</th><th><l.c.< th=""><th>0.023</th><th>100.331</th><th>0.057</th><th><l.c.< th=""><th>0.295</th><th>275.271</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.045</th><th><l.c.< th=""><th>0.023</th><th>100.331</th><th>0.057</th><th><l.c.< th=""><th>0.295</th><th>275.271</th></l.c.<></th></l.c.<></th></l.c.<>	0.045	<l.c.< th=""><th>0.023</th><th>100.331</th><th>0.057</th><th><l.c.< th=""><th>0.295</th><th>275.271</th></l.c.<></th></l.c.<>	0.023	100.331	0.057	<l.c.< th=""><th>0.295</th><th>275.271</th></l.c.<>	0.295	275.271
20	Ejido Romeral Qro.	0.122	78.448	19.904	15.444	44.140	0.009	<l.c.< th=""><th>0.136</th><th>0.010</th><th><l.c.< th=""><th>0.003</th><th><l.c.< th=""><th><l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.010</th><th>34.432</th><th>0.392</th><th>0.036</th><th>0.357</th><th>34.788</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.136	0.010	<l.c.< th=""><th>0.003</th><th><l.c.< th=""><th><l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.010</th><th>34.432</th><th>0.392</th><th>0.036</th><th>0.357</th><th>34.788</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.003	<l.c.< th=""><th><l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.010</th><th>34.432</th><th>0.392</th><th>0.036</th><th>0.357</th><th>34.788</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.015</th><th><l.c.< th=""><th>0.010</th><th>34.432</th><th>0.392</th><th>0.036</th><th>0.357</th><th>34.788</th></l.c.<></th></l.c.<>	0.015	<l.c.< th=""><th>0.010</th><th>34.432</th><th>0.392</th><th>0.036</th><th>0.357</th><th>34.788</th></l.c.<>	0.010	34.432	0.392	0.036	0.357	34.788
21	CEA Qro. Los Olvera 2	0.064	112.231	3.797	5.229	17.327	0.007	<l.c.< th=""><th>0.133</th><th>0.001</th><th><l.c.< th=""><th>0.002</th><th><l.c.< th=""><th><l.c.< th=""><th>0.014</th><th><l.c.< th=""><th>0.009</th><th>33.892</th><th>0.133</th><th>0.035</th><th>0.405</th><th>23.068</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.133	0.001	<l.c.< th=""><th>0.002</th><th><l.c.< th=""><th><l.c.< th=""><th>0.014</th><th><l.c.< th=""><th>0.009</th><th>33.892</th><th>0.133</th><th>0.035</th><th>0.405</th><th>23.068</th></l.c.<></th></l.c.<></th></l.c.<></th></l.c.<>	0.002	<l.c.< th=""><th><l.c.< th=""><th>0.014</th><th><l.c.< th=""><th>0.009</th><th>33.892</th><th>0.133</th><th>0.035</th><th>0.405</th><th>23.068</th></l.c.<></th></l.c.<></th></l.c.<>	<l.c.< th=""><th>0.014</th><th><l.c.< th=""><th>0.009</th><th>33.892</th><th>0.133</th><th>0.035</th><th>0.405</th><th>23.068</th></l.c.<></th></l.c.<>	0.014	<l.c.< th=""><th>0.009</th><th>33.892</th><th>0.133</th><th>0.035</th><th>0.405</th><th>23.068</th></l.c.<>	0.009	33.892	0.133	0.035	0.405	23.068

SItios muestreados 2018

Figura 3.5.5 Manantiales termales en la Laguna el Salitre

Figura 3.5.6 Pozo de agua potable San Antonio Calichar

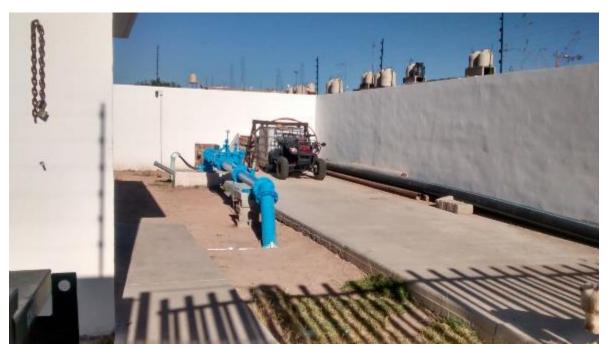


Figura 3.5.7 Pozo de agua potable Fuentes de Balvanera

Figura 3.5.8 Pozo de agua potable La Estancia

Figura 3.5.9 Pozo de agua potable San Isidro del Llanito

Figura 3.5.10 Pozo de agua potable San Ignacio

Figura 3.5.11 Pozo Hotel La Pitaya

Figura 3.5.12 Muestra 1 Pozo de agua potable Calera de Obrajuelo

Figura 3.5.13 Muestra 2 Pozo de agua potable Punta de Obrajuelo

Figura 3.5.14 Muestra 3 Pozo de agua potable La Norita (termal)

Figura 3.5.15 Muestra 4 Pozo agricultura Rancho Don Manuel

Figura 3.5.16 Muestra 5 Pozo agricultura Rancho Los Aguilar

Figura 3.5.17 Muestra 6 Pozo de agua potable San Miguel Ixtla

Figura 3.5.18 Muestra 7 Pozo pecuario (Termal)

Figura 3.5.19 Muestra 8 Pozo agrícola San Bartolomé (Termal)

Figura 3.5.20 Muestra 9 Pozo de agua potable Fuentes de Balvanera

Figura 3.5.21 Muestra 10 Pozo de agua potable La Estancia

A continuación se presenta el análisis de Hierro (Fe) Arsénico (As), Sodio (Na), Plomo (Pb) y Cadmio (Cd).

De acuerdo a la normatividad mexicana NOM-127-SSA1-1994 que establece los límites máximos permisibles (LMP) para su uso de ciertos elementos en el agua, el LMP para Hierro (Fe) es de <0.03 mg/L; en la Figura 3.5.22 se muestra la ubicación de los dos pozos que sobrepasan la normatividad: El Castillo y La Norita. Cabe mencionar que la presencia de hierro no provoca problemas de salud aunque sí pueden conferirle sabor, olor y colores indeseables al agua.

Altas concentraciones de Fe restringen el flujo de agua y reducen la presión de la misma, requiriéndose un consumo mayor de energía. De manera general el agua de esta zona presenta concentraciones debajo de la norma de concentraciones de Fe.

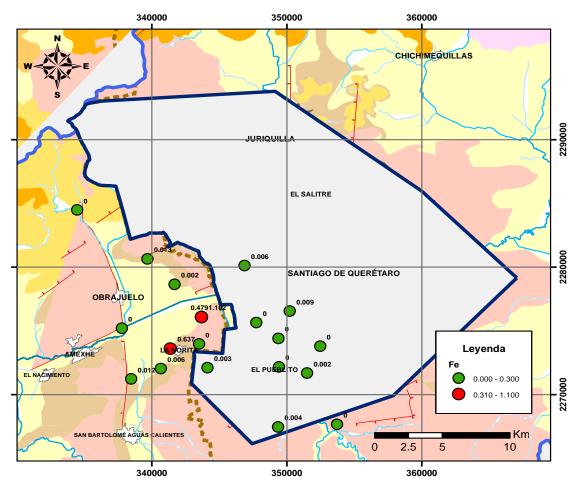


Figura 3.5.22 Concentraciones de Hierro (Fe) en la zona de estudio

En el caso de las concentraciones de Arsénico (As) (Figura 3.5.23) solo una muestra sobrepasó el límite permisible de As >0.025 mg/L, el pozo de la Norita, esto se debe a la actividad termal en esta zona. La misma condición se aplica a las concentraciones de sodio (Na) que sobrepasan la norma con valores >200 mg/L en la Figura 3.5.24 y Cadmio (Cd) (Figura 3.5.25) con valores mayores a 0.005 mg/L.

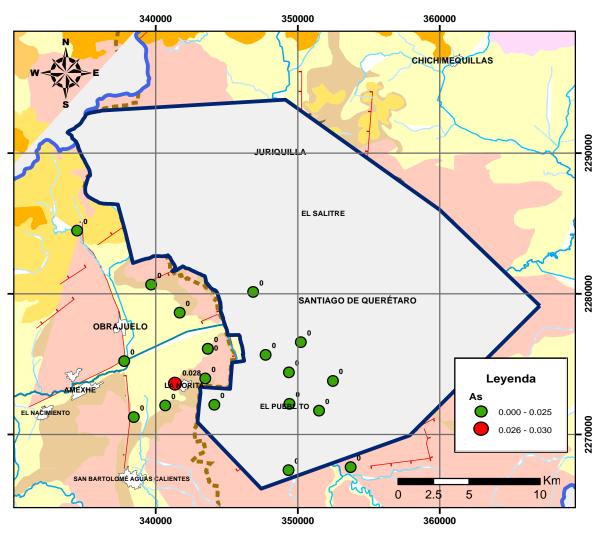


Figura 3.5.23 Concentraciones de arsénico (As) en la zona de estudio

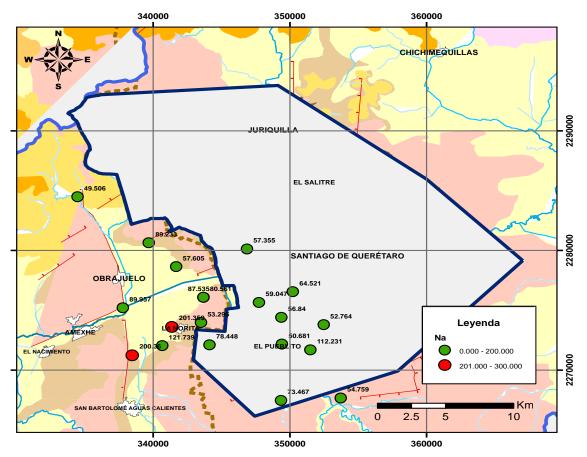


Figura 3.5.24 Concentraciones de sodio (Na) en la zona de estudio

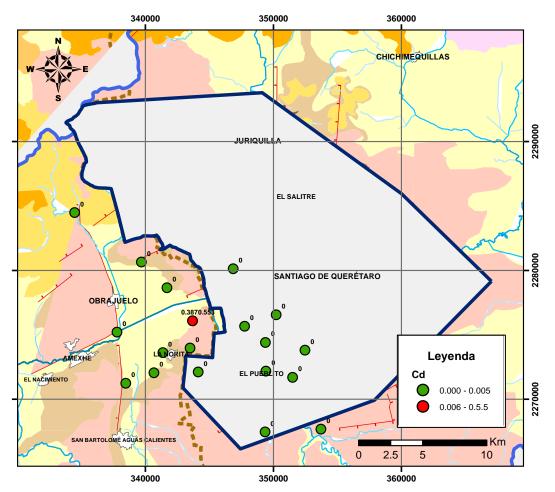


Figura 3.5.25 Concentraciones de cadmio (Cd) en la zona de estudio

Con este estudio se detectó que los problemas de contaminación de aguas subterráneas del sistema acuífero que abastece a la zona de estudio se relaciona con concentraciones de Plomo (Pb) cercanas y por arriba de la normatividad mexicana para agua potable de 0.01 mg/L (Figura 3.5.26)

En el caso de los fluoruros como se puede observar en la Figura 3.5.27 se sobrepasa el límite máximo permisible de 1.5 mg/L con concentración de 11.36 mg/L F- en el pozo la Norita y 23.09 mg/L F- en el Manantial El Salitre.

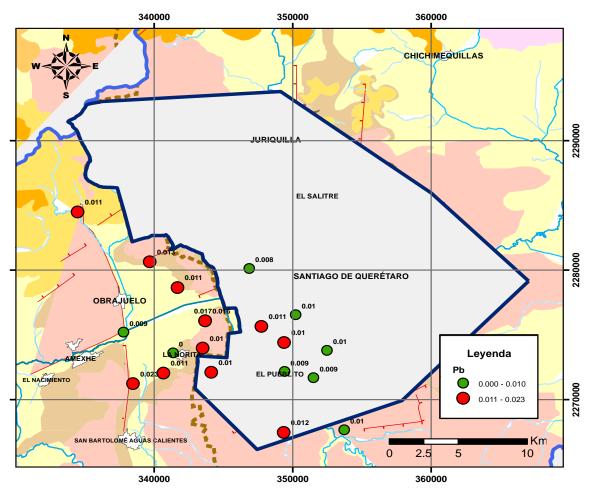


Figura 3.5.26 Concentraciones de plomo (Pb) en la zona de estudio

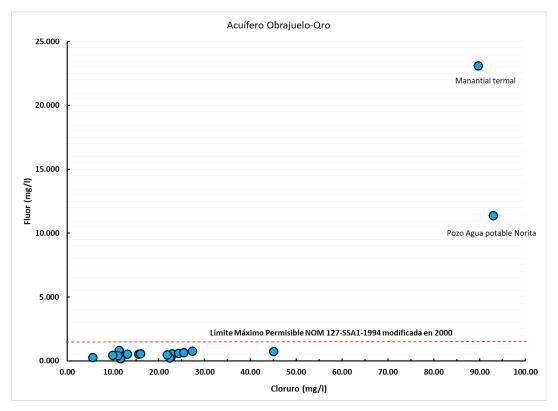


Figura 3.5.27 Gráfica de cloruro versus flúor

3.5.2 ISÓTOPOS ESTABLES

La hidrología de isótopos estables se enfoca en los isótopos que forman la molécula del agua: los isótopos de oxigeno (oxígeno-16, oxígeno-17 y oxígeno-18) y los isótopos de hidrógeno (deuterio, tritio y protio). Estos isótopos son trazadores ideales de las fuentes y movimientos del agua porque son constituyentes de la molécula del agua, no algo que está disuelto en ella como otros trazadores que se usan en hidrología.

Cuando el contenido de oxígeno-18 ($\delta^{18}O$) y deuterio ($\delta^{2}H$) de muestras de lluvia de alrededor del mundo se grafican, se distribuyen a lo largo de una línea recta conocida como Línea Meteórica Mundial (LMM), cuya pendiente es de aproximadamente 8. La LMM provee una clave importante para la interpretación de los datos de Deuterio y Oxigeno-18. Muestras de agua cuya composición isotópica cae a lo largo de la LMM se asumen originarse de la lluvia. Las desviaciones de esta línea resultan de diversos procesos isotópicos. En la mayoría de los casos, los procesos que afectan la relación entre δ 18O y δ 2D son tan únicos

que la posición de los datos puede ayudar a identificar el proceso. Uno de los procesos más comunes es la evaporación de agua superficial. Cuando el agua en un reservorio se evapora hay un enriquecimiento de los isótopos pesados, y la composición isotópica sigue "una línea de evaporación" con una pendiente entre 3 y 5 dependiendo de la tasa de evaporación. Es decir, la línea del agua evaporada tiene una pendiente menor que la LMM.

Como se puede observar en la figura 3.5.16 el contenido de oxígeno-18 (δ^{18} O) y deuterio (δ^{2} H) de las muestras de agua de los pozos Obrajuelo-Querétaro, se distribuye a lo largo de la línea meteórica local de Querétaro, lo cual implicaría que el agua de estos pozos no presenta evaporación. Por otro lado el Manantial Termal se encuentra por debajo de la línea meteórica de Querétaro por lo tanto presenta evaporación.

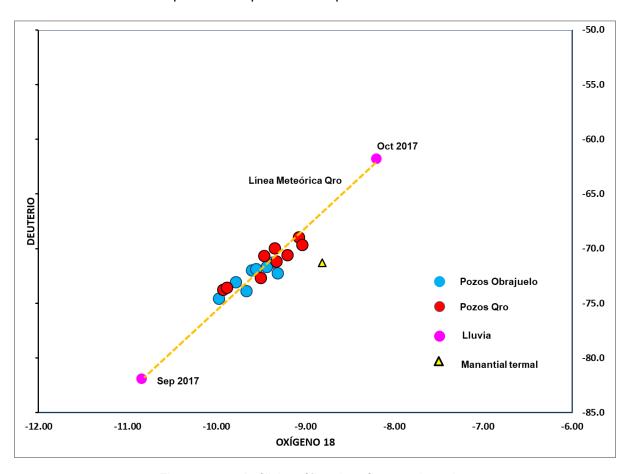


Figura 3.5.28 Análisis gráfico de oxígeno y deuterio

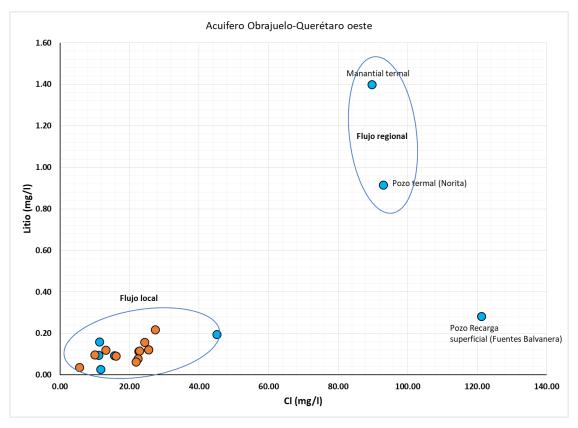


Figura 3.5.29 Gráfica de cloruro versus litio

3.5.3 ANÁLISIS DE TEMPERATURA

En la Figura 3.5.30 se puede observar la variación de la temperatura en la zona de estudio, es importante mencionar que la zona presenta altos valores de temperatura, variando entre 28,5 ° C a 70° C esto se debe a que el sitio de Toyota se encuentra cercano a una zona de aguas termales.

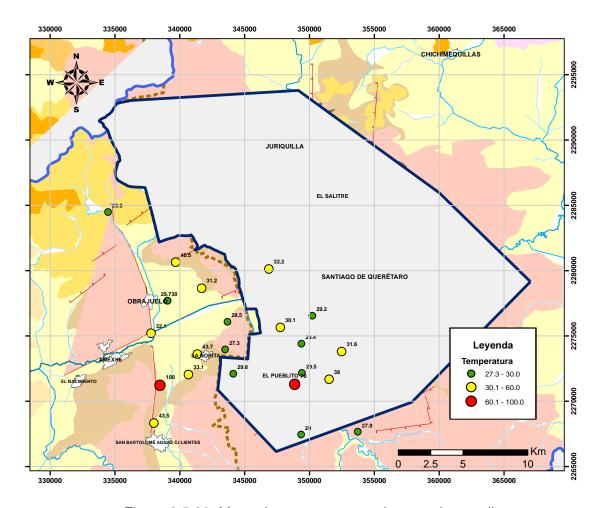


Figura 3.5.30. Mapa de temperatura en la zona de estudio

Para establecer evidencia de mezcla entre los flujos regionales y locales se utilizaron las concentraciones de cloruro y litio, ambos elementos conservativos (Figura 3.5.31)

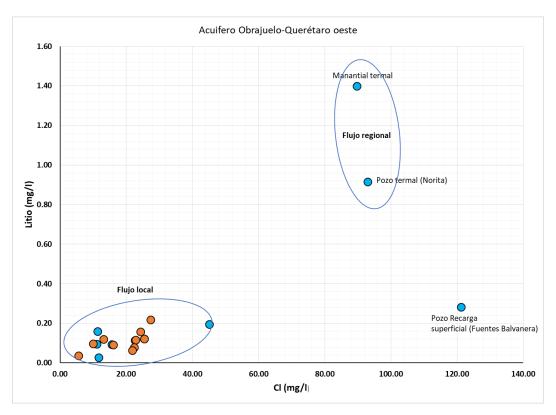


Figura 3.5.31. Concentraciones de litio y cloro en la zona de estudio

3.6 PRUEBAS DE BOMBEO DE LARGA DURACIÓN

Una prueba de bombeo de larga duración (72 horas) se realizó en el acuífero para determinar sus características hidráulicas.

Los abatimientos se midieron tanto en el pozo profundo y en los pozos situados a una distancia no mayor a 1000 metros con respecto al sitio de bombeo. La prueba consistió en dos etapas, una de abatimiento y una de recuperación.

La selección de los sitios de medición se hizo una vez que la configuración de la elevación del nivel estático se había elaborado, de tal manera que se prefierieron aquellos pozos que estaban más cerca del pozo profundo.

Las metodologías que se utilizaron para la interpretación de las prueba de bombeo fueron de Theis, Jacob, Hantush, etc., de acuerdo con el tipo de acuífero y su respuesta hidráulica.

Las figuras 4.2.1-4.2.9 muestran los resultados de las pruebas de bombeo llevadas a cabo en los pozos Alamos I, Centro Expositor I, Cañada 2B, Capilla II, Capilla IV, Júrica Robles, Loma Bonita (Jurica Pueblo II), Santa María Magdalena V y la Unidad de Deportes I.

Tabla 3.6.1 Compilación de los resultados de las pruebas de bombeo en Obrajuelo-Querétaro, 2017

No.	CENSUS	PROPIETARY	LONG_UTM	LAT_UTM	TOTAL DEPTH	TRANSMISIVITY T (m²/d)	DRAWDOWN METHOD
1	CNA-720	CEA QUERETARO	360478	2279183	350	3.26	NEUMAN (LIBRE)
		ALAMOS 1					
2	CNA	CEA QUERETARO	356764	2275825	300	190.00	NEUMAN (LIBRE)
		C. EXPOSITOR 1				151.00	HANTUSH (SEMICONFINADO)
3	CNA	CEA QUERETARO	362098	2279824	170	48.60	NEUMAN (LIBRE)
		CAÑADA 2-B					
4	CNA-624	CEA QUERETARO	352866	2276602	262	43.40	NEUMAN (LIBRE)
		CAPILLA 2					
5	L-57	CEA QUERETARO	350651	2277046	220	4.33	NEUMAN (LIBRE)
		CAPILLA 4				4.33	HANTUSH (SEMICONFINADO)
6	CNA	CEA QUERETARO	349389	2285659	169	26.10	NEUMAN (LIBRE)
		JURICA ROBLES				20.70	HANTUSH (SEMICONFINADO)
7	CNA-1796	CEA QUERETARO	348203	2285512	359	21.70	NEUMAN (LIBRE)
		LOMA BONITA (JURICA P. II)				24.40	HANTUSH (SEMICONFINADO)
8	CNA	CEA QUERETARO	348579	2280474	350	191.00	NEUMAN (LIBRE)
		STA. MA. MAGDALENA V				191.00	HANTUSH (SEMICONFINADO)
9	CNA-1822	CEA QUERETARO	351941	2273770	195	199.00	NEUMAN (LIBRE)
		U. DEPORTIVA 1				141.00	HANTUSH (SEMICONFINADO)
10	CNA	CEA QUERETARO	349646	2279164	300	19.70	NEUMAN (LIBRE)
		U. DEPORTIVA EL TINTERO					
11	IMTA	RANCHO SAN MANUEL	3390075	2277808	250	45.50	NEUMAN (LIBRE)
						38.40	HANTUSH (SEMICONFINADO)
12	IMTA	RANCHO VALLE VERDE	341585	2279275	195	67.80	NEUMAN (LIBRE)
						54.30	HANTUSH (SEMICONFINADO)
13	IMTA	RANCHO CASTILLO	343704	2272182	200	89.90	NEUMAN (LIBRE)

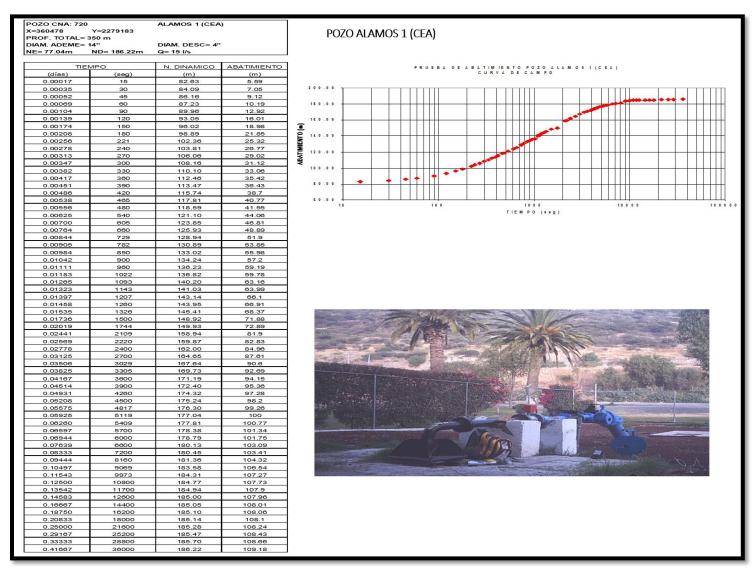


Figura 3.6.1 Resultados de pruebas de bombeo pozo Alamos I

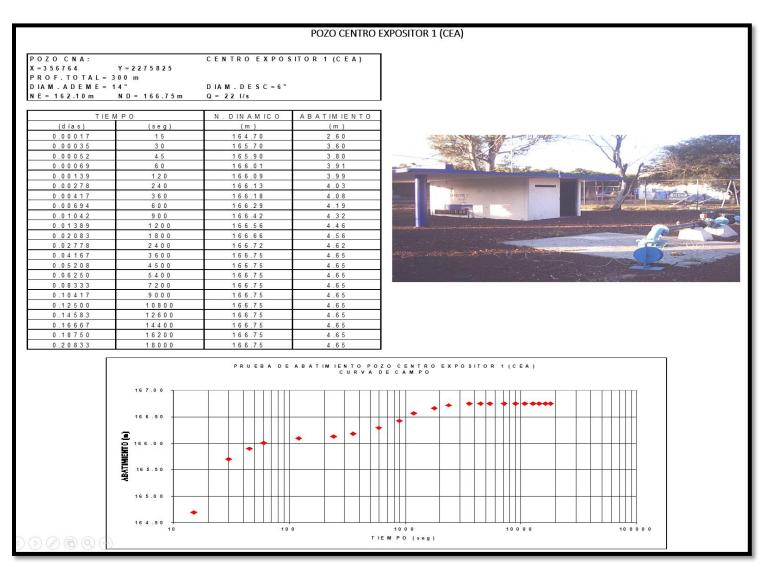


Figura 3.6.2 Resultados de pruebas de bombeo pozo Centro Expositor I

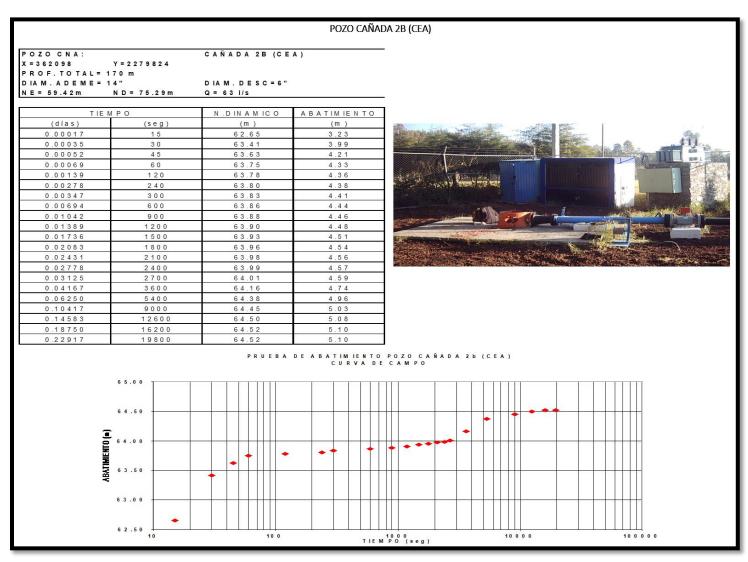


Figura 3.6.3 Resultados de pruebas de bombeo Pozo Cañada 2B

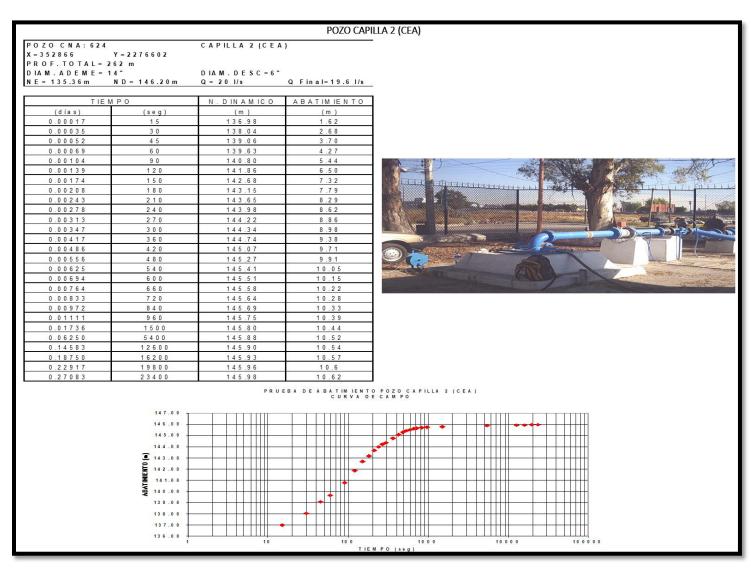


Figura 3.6.4 Resultados de pruebas de bombeo pozo Capilla II

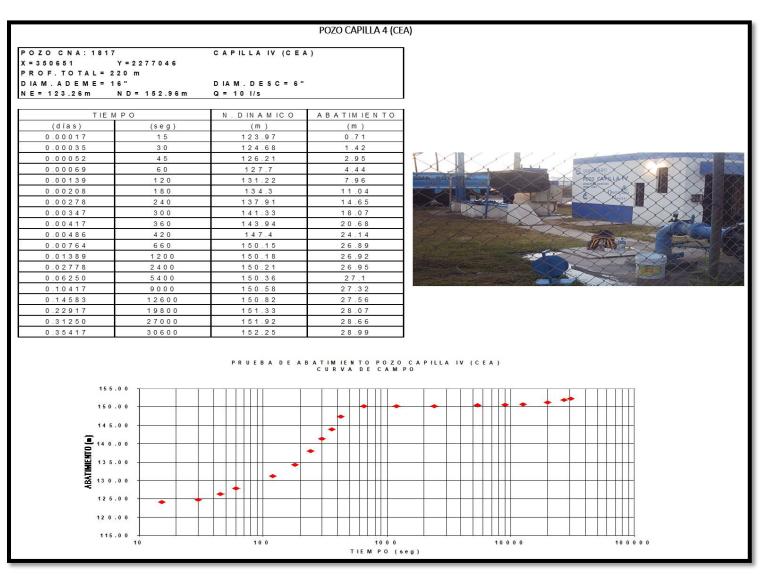


Figura 3.6.5 Resultados de pruebas de bombeo pozo Capilla IV

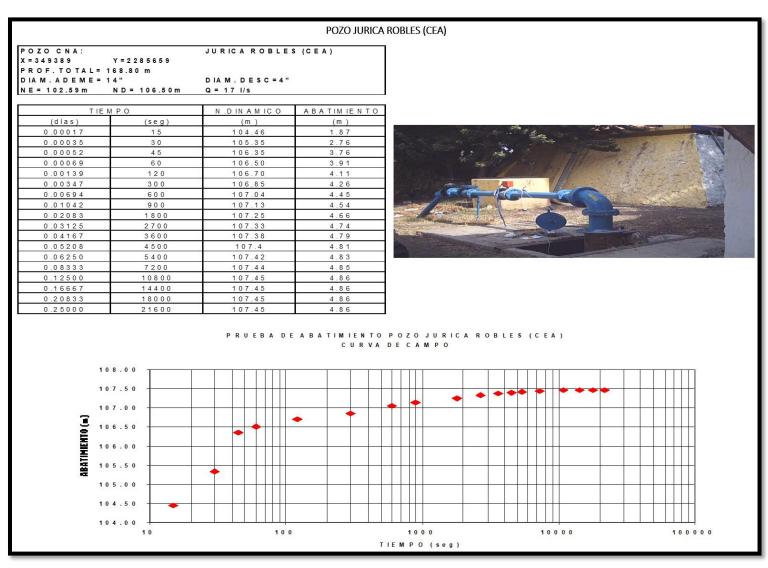


Figura 3.6.6 Resultados de pruebas de bombeo pozo Jurica Robles (CEA)

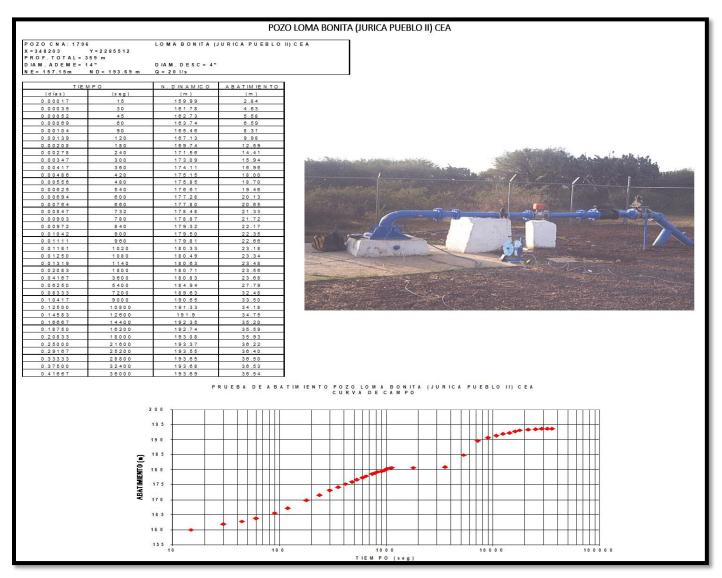


Figura 3.6.7 Resultados de pruebas de bombeo pozo Loma Bonita (Jurica Pueblo II)

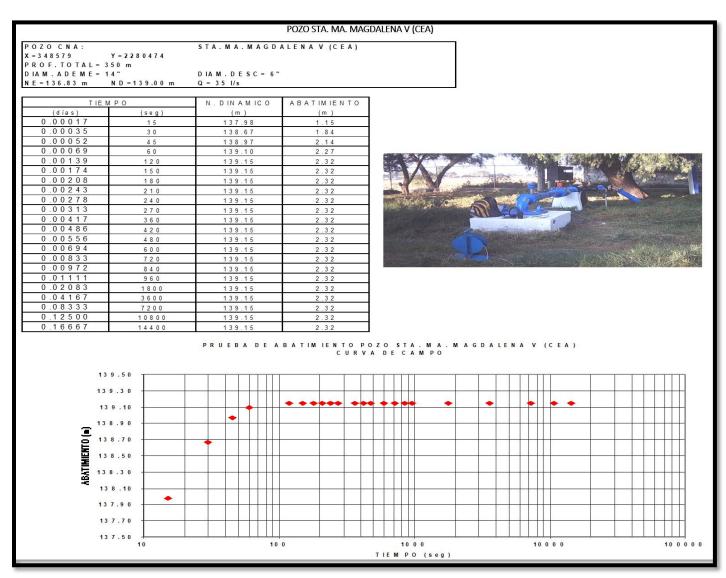


Figura 3.6.8 Resultados de pruebas de bombeo pozo Santa María Magdalena V (CEA)

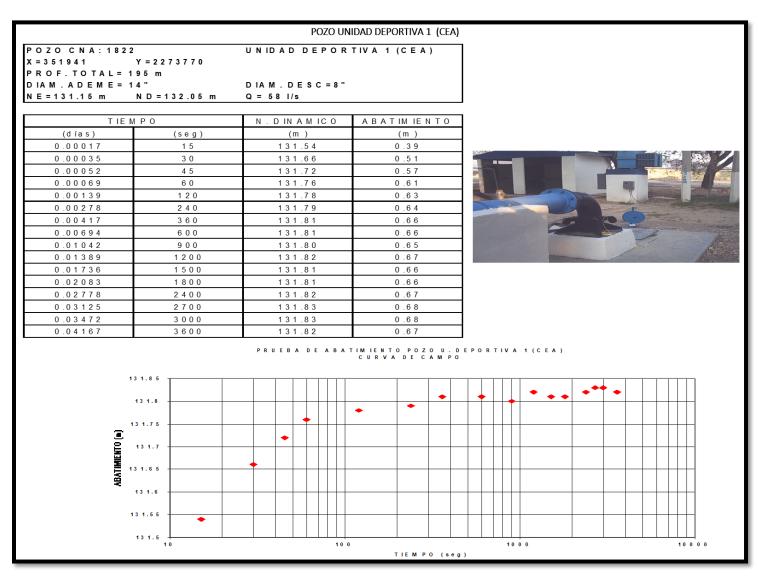


Figura 3.6.9 Resultados de pruebas de bombeo pozo Unidad Deportiva I (CEA)

3.7 DIRECCIÓN DE FLUJO DEL AGUA SUBTERRÁNEA

A través de las mediciones piezométricas de pozos distribuidos en el área de estudio, la configuración del nivel estático regional se elaboró (Fig. 3.7.1). Esta configuración incluye la porción de la Celaya acuífero (Zona de Obrajuelo) y el acuífero Querétaro. Esta configuración incluye un área de aproximadamente 25 km por 30 km. La configuración presenta líneas concéntricas que disminuyen desde las zonas laterales hacia el centro del valle Querétaro. En el área de Obrajuelo, donde se ubicará la planta de Toyota, hay un flujo de agua subterránea desde el Oeste hacia el Este, es decir, de la zona de Guanajuato a Querétaro. Los valores máximos del nivel de las aguas subterráneas van de 1850 metros sobre el nivel del mar (msnm) a 1660 metros sobre el nivel del mar en el centro del valle, por lo tanto, hay una variación del orden de 210 m.

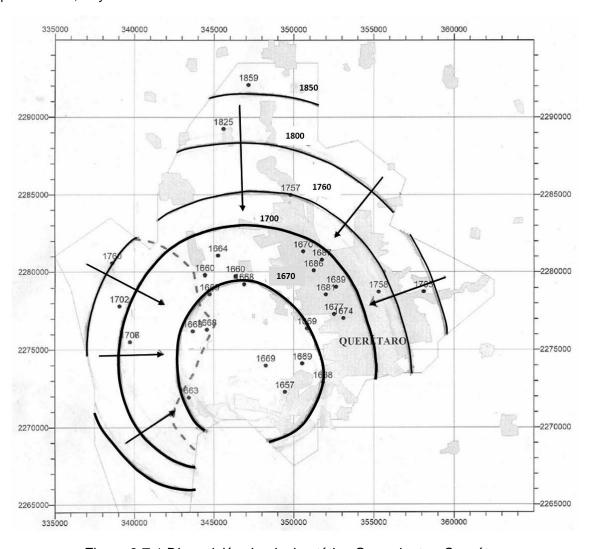


Figura 3.7.1 Disposición de nivel estático Guanajuato - Querétaro

Por medio de esta configuración se pudo determinar que en la zona existe un cono de abatimiento en el centro del Valle de Querétaro, resultado de una gran extracción de aguas subterráneas a lo largo de varias décadas para el abastecimiento de agua para su uso principal urbano y agricultura.

3.8 BALANCE DE AGUA SUBTERRÁNEAS

En todo sistema o subsistema del ciclo hidrológico, el principio que indica que el agua no se crea ni se destruye, se refleja en la denominada ecuación de balance hidrológico, la cual permite relacionar las cantidades de agua que circulan por el ciclo. Esta ecuación establece que:

Entradas - Salidas = Cambio de almacenamiento

La simplicidad de la ecuación anterior es frecuentemente engañosa, ya que en la mayoría de los casos, los términos que la componen no pueden cuantificarse adecuada y fácilmente. Aunque, es claro que la ecuación de balance hidrológico es una herramienta útil para obtener estimaciones de la magnitud y distribución en el tiempo de las variables hidrológicas que en ella intervienen.

Definición del balance de aguas subterráneas

El Balance de Aguas Subterráneas (BAS) que a continuación se presenta corresponde esencialmente a la planicie del Obrajuelo-Querétaro y se fundamenta en el principio de conservación de la masa, cuya ecuación de continuidad establece que la diferencia entre los volúmenes de entradas (recarga) y salidas (descarga) de aguas subterráneas de un sistema, establecerá el posible cambio de volumen en el almacenamiento del sistema-acuífero para un determinado tiempo. Es decir:

Volúmenes de entrada – Volúmenes de salida = Cambio del volumen almacenado

Si la diferencia resulta positiva, significa que son mayores los volúmenes de recarga al sistema que las descargas; de lo contrario, será el sistema en cuestión quien aporte mayores volúmenes de agua a costa del almacenamiento del sistema-acuífero.

Como se ha señalado, las aguas subterráneas del Acuífero de Obrajuelo-Querétaro se manifiestan de manera compleja a través de un sistema de medios granular y fracturado de comportamiento hidráulicamente libre y características heterogéneas y anisótropas definidas. La profundidad, a la que se encuentra el nivel freático varía de 60 a 120 m. La elevación del nivel freático es variable entre los 1890 a 1670 msnm. La dirección de flujo de las aguas subterráneas es concéntrica. El espesor de saturación total de agua es en promedio de 200 m.

Para la definición del área de balance de aguas subterráneas (BAS), se consideró la poligonal propuesta por el IMTA, que comprende a toda la planicie aluvial del Acuífero de Obrajuelo-Querétaro, donde se emplazan los cultivos y la zona de la ciudad de Querétaro donde se extrae el agua principalmente para uso potable.

Figura 3.8.1 Zona de balance Guanajuato - Querétaro

Cabe resaltar que los datos del Registro Público de Derechos del agua (REPDA) no fueron considerados como Extracción en Salidas al no representar un volumen cercano a la realidad, ya que en la zona se instaló un acueducto y de acuerdo al censo realizado la cantidad de agua que se abastece a la población es menor.

A continuación se presenta el balance de aguas subterráneas, los valores del balance están en Millones de metros cúbicos por año:

Entradas

Recarga vertical = 34.6 (30% retornos de riego y fugas de la red de distribución)

Recarga natural = 17.87

Flujos horizontales = 60.9

Total entradas =113.46

Salidas

Flujos horizontales = 0

Extracción= 115.66

Total salidas= 115.66

Cambio de almacenamiento = -2.2

3.9 INSTALACIÓN DE FLUJÓMETROS EN POZOS PARA DETERMINAR LA VARIACIÓN DE LA EXTRACCIÓN EN EL TIEMPO

Se llevó a cabo la instalación de flujómetros automatizados en dos pozos de la zona de estudio. El primer flujómetro se instaló en el pozo de agua potable de la comunidad de Punta de Obrajuelo. Se procedió a cortar la tubería de descarga y a conectar el aparato (Figuras 3.9.1 a 3.9.4).

Figura 3.9.1 Instalación de flujómetro en el pozo de Punta de Obrajuelo

Figura 3.9.2 Instalación de flujómetro en el pozo de Punta de Obrajuelo

Figura 3.9.3 Instalación de flujómetro en el pozo de San Bartolomé

Figura 3.9.4 Instalación de flujómetro en el pozo de San Bartolomé

Con la instalación de estos aparatos será posible monitorear la extracción de agua subterránea en estos pozos, la cual se podrá accesar a través de internet y los registros quedarán grabados en la memoria interna.

3.10 REFERENCIAS

- http://www.inegi.org.mx/geo/contenidos/topografia/
- Hidrogeología física y química; PA Domenico, FW Schwartz; John Wiley & Sons, Inc.
- Canadian Council of Ministers of the Environment (CCME). 2001, 'Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index 1.0', Technical Report, Canadian Council of Ministers of the environment Winnipeg, MB, Canada. Disponible: http://www.ccme.ca/sourcetotap/wqi.html.

Diario Oficial de la Federación (DOF). 20 de junio de 2000. Modificación de la Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización.