

Instituto Mexicano de Tecnología del Agua

Programa de Posgrado

Tesis

REVISION HIDROLOGICA DE LAS PRESAS RODRIGO GOMEZ "LA BOCA" Y EL CUCHILLO-SOLIDARIDAD NUEVO LEON, PARA ELABORAR EL MANUAL DE OPERACION ANTE LA INFLUENCIA DE FENOMENOS HIDROMETEOROLOGICOS. EXTREMOS

que para obtener el grado de Maestría en Ciencias del Agua (Hidrometeorología y Meteorología Operativa)

> presenta Doroteo Treviño Puente

Tutor: Dr. Aldo Iván Ramírez Orozco

Instituto Mexicano de Tecnología del Agua

Programa de Posgrado

Tesis

REVISIÓN HIDROLÓGICA DE LAS PRESAS RODRIGO GÓMEZ "LA BOCA"
Y EL CUCHILLO-SOLIDARIDAD NUEVO LEÓN,
PARA ELABORAR EL MANUAL DE OPERACIÓN ANTE LA INFLUENCIA DE
FENÓMENOS HIDROMETEOROLÓGICOS EXTREMOS

que para obtener el grado de Maestría en Ciencias del Agua (Hidrometeorología y Meteorología Operativa)

> presenta Doroteo Treviño Puente

Tutor: Dr. Aldo Iván Ramírez Orozco

Con fundamento en los artículos 21 y 27 de la Ley Federal del Derecho de Autor y como titular de los derechos moral y patrimoniales de la obra titulada REVISIÓN HIDROLÓGICA DE LAS PRESAS RODRIGO GÓMEZ "LA BOCA" Y EL CUCHILLO-SOLIDARIDAD NUEVO LEÓN, PARA ELABORAR EL MANUAL DE OPERACIÓN ANTE LA INFLUENCIA DE FENÓMENOS HIDROMETEOROLÓGICOS EXTREMOS, otorgo de manera gratuita y permanente al Instituto Mexicano de Tecnología del Agua, autorización para que fijen la obra en cualquier medio, incluido el electrónico, y la divulguen entre su personal, estudiantes o terceras personas, sin que pueda percibir por tal divulgación una contraprestación.

DOROTEO TREVIÑO PUENTE

Jivtepec, Mov. a 17 da Marzo do 2011 Lugar y fecha

Firma

DEDICATORIA

A mi esposa Juanita Nora Martínez Caballero por su comprensión y apoyo durante la realización del posgrado.

A Moisés Alejandro, Claudia Elizabeth, Cindy Marlen, mis hijos que han sido la motivación de mi vida.

A mi Madre a quien le debo lo que soy, a todos mis hermanos.

AGRADECIMIENTOS

Al Dr. Aldo Iván Ramírez Orozco, M.I. Ernesto Aguilar Garduño, M.I. Juan Fco Gómez Martínez y M. C. José Luis Pérez López, por todo su apoyo y tiempo brindado.

Al Dr. Felipe I. Arreguín Cortés, Subdirector General Técnico de la Comisión Nacional del Agua, al Ing. Pedro Garza Treviño, Ex Director General del Organismo de Cuenca Río Bravo de la Comisión Nacional del Agua y al Biol. Sergio Ramírez Almaraz, Director Técnico por las facilidades brindadas para realizar el posgrado y el trabajo de tesis.

Finalmente a mis compañeros de la Dirección Técnica del Organismo de Cuenca Río Bravo, por su apoyo para concluir este trabajo.

RESUMEN

Hoy en día la Seguridad hidrológica de las grandes presas de almacenamiento reviste una gran importancia, ya que la mayoría de estas obras fueron construidas basadas en estudios hidrológicos con muy poca información ya sea hidrométrica o de precipitación pluvial. Es por ello que ahora que se dispone de una mayor cantidad de datos, es necesario corroborar si las capacidades destinadas para el control de avenidas son suficientes y si no, proponer las que resulten con base en el uso de las herramientas que existen hoy en día y de la información de precipitación pluvial con datos cada 10 minutos.

Para llevar a cabo el presente trabajo se utilizó la información histórica de precipitación pluvial máxima en 24 horas de las estaciones climatológicas La Boca, El Cerrito y Laguna de Sánchez, ubicadas todas en el municipio de Santiago, N. L. y con influencia en la cuenca de la presa La Boca, así como la información de las estaciones automáticas Protección Civil y La Estanzuela ubicadas en el municipio de Monterrey y que forman parte del Sistema de Alertamiento Hidrometeorológico de Monterrey. Con el uso del programa HEC-HMS se elaboró un Modelo Lluvia Escurrimiento para determinar los hidrogramas a diferentes períodos de retorno que pueden ingresar a la presa La Boca y de esta manera hacer la revisión hidrológica de la presa.

Para la presa El Cuchillo-Solidaridad, se utilizó la información hidrométrica medida en la Estación El Cuchillo que se localiza aguas abajo de la cortina de esta presa, se analizó la información de las avenidas registradas en el BANDAS desde 1927 a 1992 y la correspondiente a 2010 provocada por el Huracán Alex, se seleccionaron las avenidas con gasto máximo y mayor volumen con el propósito de mayorar los hidrogramas a similitud de los gastos máximos asociados a los distintos períodos de retorno obtenidos mediante la función de distribución de probabilidad Doble Gumbel. Con esto, se utilizó también el programa HEC-HMS para hacer la revisión hidrológica de la presa el Cuchillo-Solidaridad.

Por los llenados rápidos que se han presentado en la presa La Boca y con el objetivo de elaborar el manual de operación de esta presa, que permita tomar las mejores decisiones en la operación del vertedor particularmente ante la presencia de fenómenos hidrometeorológicos adversos y extremos, se le dará mayor importancia en el presente trabajo, realizando los análisis necesarios que permitan obtener las distintas opciones de manejo, buscando que los llenados rápidos puedan ser transitados en el vaso y que sus descargas no provoquen daños aguas abajo del vertedor.

INDICE Página

D	EDICATORIA	3
Α	GRADECIMIENTOS	4
	RESUMEN	5
	Capítulo 1	13
	INTRODUCCIÓN	13
	1.1 Antecedentes	13
	1.2 Información general de la presa El Cuchillo-Solidaridad	16
	1.3 Información general de la presa La Boca	18
	1.4 Planteamiento del problema en la presa La Boca	23
	1.5 Planteamiento del problema en la presa El Cuchillo-Solidaridad	30
	1.6 Objetivo del estudio	35
	Capítulo 2	36
	REVISIÓN DE LITERATURA	36
	2.1Seguridad hidrológica en presas	36
	2.2 Uso del análisis de frecuencias en hidrología	44
	2.3 Análisis de Iluvia de una tormenta	45
	2.4 Relación Iluvia-escurrimiento	46
	2.5. Diseño y revisión hidrológicos de presas	
	Capítulo 3	48
	REVISIÓN HIDROLÓGICA DE LA PRESA LA BOCA	48
	3.1 Elaboración del modelo-lluvia escurrimiento para la presa La Boca	48
	3.2 Determinación del Número de Escurrimiento en la cuenca de la presa La Boca	59
	3.3 Longitud y pendiente del cauce principal	65
	3.4 - Determinación de la avenida de diseño	90

Capítulo 4	124
REVISIÓN HIDROLÓGICA DE LA PRESA EL CUCHILLO-SOLIDARIDAD	124
4.1 Análisis de Frecuencias de Avenidas	124
4.2 Revisión hidrológica de presa El Cuchillo-Solidaridad	135
Capítulo 5	155
CONCLUSIONES Y RECOMENDACIONES	155
5.1 Presa Rodrigo Gómez La Boca	155
5.2 Presa El Cuchillo-Solidaridad	161
Capítulo 6	163
BIBLIOGRAFÍA CONSULTADA	163

Abreviaturas

BANDAS: Banco Nacional de Datos de Aguas Superficiales

CNA: Comisión Nacional del Agua

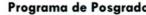
CTOOH: Comité Técnico de Operación de Obras Hidráulicas CENAPRED: Centro Nacional de Prevención de Desastres GASIR: Gerencia de Aguas Superficiales e Ingeniería de Ríos

HEC-HMS: Hydrologic Engineering Center - Hydrologic Model System

IMTA: Instituto Mexicano de Tecnología del Agua INEGI: Instituto Nacional de Estadística y Geografía

M: Método de Mayoración

NAME: Nivel de Aguas Máximas Extraordinarias NAMO: Nivel de Aguas Máximas Ordinarias NAMINO: Nivel de Aguas Mínimo de Operación


SAHM: Sistema de Alertamiento Hidrometeorológico de Monterrey PIAE: Protección a la Infraestructura y Atención a Emergencias

PMP: Precipitación Máxima Probable

Tr: Período de Retorno en años

Índice de Tablas Pá	gina
Tabla 1 Capacidades de la presa El Cuchillo-Solidaridad	17
Tabla 2 Capacidades de la presa La Boca	
Tabla 3 Capacidades como resultado del estudio realizado en el año 2004	
Tabla 4 Resumen de trasvasos y extracciones de control	
Tabla 5 Lluvias máximas en 24 horas en la estación climatológica El Cerrito	49
Tabla 6 Lluvias máximas en 24 horas en la estación climatológica La Boca	
Tabla 7 Lluvias máximas en 24 horas en la estación climatológica Laguna de Sánchez	
Tabla 8 Análisis de frecuencias de las Iluvias máximas en 24 horas anuales	
Tabla 9 Períodos de retorno asociados a los datos observados de	
la estación climatológica El Cerrito	
Tabla 10 Períodos de retorno asociados con los datos observados en	
la estación climatológica La Boca	
Tabla 11 Períodos de retorno asociados con los datos observados en	
la estación climatológica Laguna de Sánchez	
Tabla 12Tormentas de diseño estimadas con la FDP Doble Gumbel	
Valores del número de escurrimiento N en la cuenca hidrológica	
Tabla 13Valores del número de escurrimiento N en la cuenca hidrológica	
Tabla 14 Números de escurrimiento para cada una de las subcuencas de la presa La Boca	
Tabla 15 Pendiente del cauce del arroyo La Chueca	
Tabla 16 Pendiente del cauce del arroyo Escamilla	
Tabla 17 Pendiente del cauce del arroyo El Puerco.	
Tabla 18 Área de influencia de las estaciones por subcuenca	
Tabla 19 Pesos por subcuenca	
Tabla 20 Calculo de tiempo de concentración y retraso	
Tabla 21 Valores de precipitación pluvial cada 10 minutos de la estación Protección Civil	
Tabla 22 Valores de precipitación pluvial cada 10 minutos de la estación	
La Estanzuela del 30 de junio al 1 de julio de 2010	
Tabla 23 Valores de precipitación pluvial cada 10 minutos de la estación	
La Estanzuela, del 1 al 2 de julio de 2010	
Tabla 24 Valores de precipitación pluvial cada 10 minutos de la estación	
La Estanzuela, del 20 al 21 de septiembre de 2010	
Tabla 25 Lluvias máximas en 24 horas de las estaciones La Boca, El Cerrito	
y Laguna de Sánchez	
Tabla 26 Análisis de la duración de las tormentas para calcular los porcentajes	
de reducción de la precipitación	

Tabla 27 Lluvias máximas en 24 horas reducidas y factor de reducción	98
Tabla 28 Tiempo 1, tiempo de concentración entre el centroide del hietograma	101
y el pico del hidrograma obtenido por antitránsito; Tiempo 2, tiempo	101
de concentración obtenidos mediante Kirpich	101
Tabla 29Tiempos de concentración ajustados	102
Tabla 30 Lluvias máximas afectadas por el factor de reducción proyectadas	108
para diferentes períodos de retorno	108
Tabla 31 Características de la presa La Boca (2004)	108
Tabla 32 Resultado del tránsito de la avenida de diseño asociada a un Tr= 10000 años	118
Tabla 33 Gastos máximos anuales de la estación Hidrométrica El Cuchillo, N. L	125
Tabla 34 Resultado del análisis de frecuencias de los gastos máximos de la	126
estación El Cuchillo, N. L	126
Tabla 35 Períodos de retorno asociados a los datos observados	127
Tabla 36 Gastos máximos asociados a distintos períodos de retorno	128
Tabla 37 Resultados del cálculo del tránsito de la avenida asociada a	150
un Tr= 10 000 años	150

Índice de Figuras	Página
Figura 1 Cuenca del Río San Juan, parte de la cuenca del Río Bravo	13
Figura 2Presa Rodrigo Gómez, "La Boca", 24 de septiembre de 2003	14
Figura 3 Presa El Cuchillo, 24 de septiembre de 2003	14
Figura 4 Régimen de precipitación pluvial en la cuenca del río San Juan	15
Figura 5 Cuenca de la presa el Cuchillo-Solidaridad	
Figura 6 Cuenca de la presa La Boca	20
Figura 7 Evolución del almacenamiento Figura 8 Régimen de precipitación pluvial	24
Figura 9 Evolución del almacenamiento del 15 al 16 de septiembre de 2002	25
Figura 10, Operación del vertedor de la presa La Boca, septiembre de 2002	26
Figura 11 Sitio Los Canelos sobre el río San Juan aguas debajo de la presa La Boca	
Figura 13 Ubicación de las secciones transversales del estudio	27
Figura 14 Secciones transversales del tránsito de avenida en el sitio de Los Canelos	29
Figuras 15 y 16 Parte media de la cuenca de La Boca y parte del vaso	29
Figura 17 Escurrimiento anual en la Estación Hidrométrica El Cuchillo	31
Figura 18 Evolución del almacenamiento en la presa El Cuchillo-Solidaridad	31
Figura 19 Entradas totales al vaso de la presa El Cuchillo	32
Figura 24 Hidrografía de la cuenca de la presa La Boca	59
Figura 25 Discretización de la cuenca de la presa La Boca	60
Figura 26 Cobertura vegetal en la cuenca de la presa La Boca,	61
Figura 28 Descripción de tipos de suelo en la cuenca de la presa La Boca	63
Figura 27 Números de Escurrimiento en la cuenca de la presa La Boca	64
Figura 29 Perfil del arroyo La Chueca	67
Figura 30 Perfil del arroyo Escamilla	69
Figura 31 Perfil del arroyo El Puerco	71
Figura 32 Determinación de Polígonos de Thiessen	74
Figuras 34 y 35 Curva masa y hietograma de la estación Protección Civil	80
Figuras 36 y 37 Curva masa y hietograma de la estación La Estanzuela	83
Figura 42 Componentes del proyecto La Boca en el programa HEC-HMS	92
Figura 43 Comparación de hidrogramas del 15 al 16 de septiembre de 2002	94
Figura 44 Comparación de hidrogramas del 30 de junio y 1 de julio de 2010	94
Figura 45 Comparación de hidrogramas del 1 de julio de 2010	95
Figura 46 Comparación de hidrogramas del 20 de septiembre de 2010	95
Figura 48Corrida para septiembre de 2002	
Figura 49Comparación de hidrogramas septiembre de 2002	
Figura 50Corrida para el 30 de junio y 1 de julio d 2010	

Figura 51Comparación de hidrogramas del 30 de junio y 1 de julio de 2010	104
Figura 52Corrida para el 1 y 2 de julio de 2010	105
Figura 53Comparación de hidrogramas del 1 y 2 de julio d 2010	105
Figura 54Corrida para el 20 de septiembre de 2010	
Figura 55-Comparación de hidrogramas del 20 de septiembre de 2010	106
Figura 60 Análisis Tr=1000 años, con 6 compuertas abiertas a 3 m	
Figura 62 Análisis Tr=10 000 años, con 8 compuertas abiertas a 3 m	112
Figura 64 Tránsito de la avenida correspondiente a un Tr=10 000 años	113
Figura 65 Resultado de la corrida correspondiente a un Tr= 10 000 años	113
Figura 66 Tránsito de la avenida asociada a un Tr=10000 años a partir del NAMO	119
Figura 67 Políticas de operación del vertedor de la presa La Boca	120
Figura 68 Resultado del tránsito de la avenida asociada a un Tr=1000 años	121
Figura 69 Tránsito de la avenida asociada a un Tr=1000 años, a partir del NAMO	121
Figura 70 Resultado del tránsito de la avenida asociada a un Tr=500 años	122
Figura 71 Tránsito de la avenida asociada a un Tr=500 años a partir del NAMO	122
Figura 72 Resultado del tránsito de la avenida asociada a un Tr= 50 años	123
Figura 73 Tránsito de la avenida asociada a un Tr= 50 años, a partir del NAMO	123
Figura 75 Avenidas históricas medidas en la estación hidrométrica El Cuchillo, N. L	132
Figura 77 Hidrograma de la avenida asociada a un Tr=10 000 años	134
Figura 79 Resultados del tránsito de la avenida asociada a un Tr=10,000 años	137
Figura 81Resultados del tránsito de la avenida asociada a un Tr= 1000 años	151
Figura 82 Tránsito de la avenida asociada a un Tr=1000 años, a partir del NAMO	151
Figura 83Resultados del tránsito de la avenida asociada a un Tr=500 años	152
Figura 84 Tránsito de la avenida asociada a un Tr= 500 años, a partir del NAMO	152
Figura 85Resultados del tránsito de la avenida asociada a un Tr= 50 años	153
Figura 86 Tránsito de la avenida asociada a un Tr=50 años, a partir del NAMO	153
Figura 87 Curvas de extracción del vertedor de la presa El Cuchillo-Solidaridad, N. L	
Figura 88 Imagen de satélite del canal infrarrojo	
Figura 89 Imagen del Radar de Brownsville Tx	
Figura 90 Producto del Modelo GFS, cuenca del río San Juan	
Figura 91 Producto del Modelo WRF, para el noreste de México	159

Capítulo 1

INTRODUCCIÓN

1.1.- Antecedentes.

La cuenca del río San Juan forma parte de la porción mexicana de la cuenca del río Bravo, se localiza en la región noreste del país y por su ubicación, se encuentra entre las celdas de Hadley y Farrel lo cual indica que el régimen de precipitaciones que generan escurrimientos se deben a la influencia de ciclones tropicales en la temporada de junio a noviembre, y a la influencia de frentes fríos sobre todo los que se presentan en esta región en los meses de septiembre a diciembre sin descartar la presencia de células convectivas.

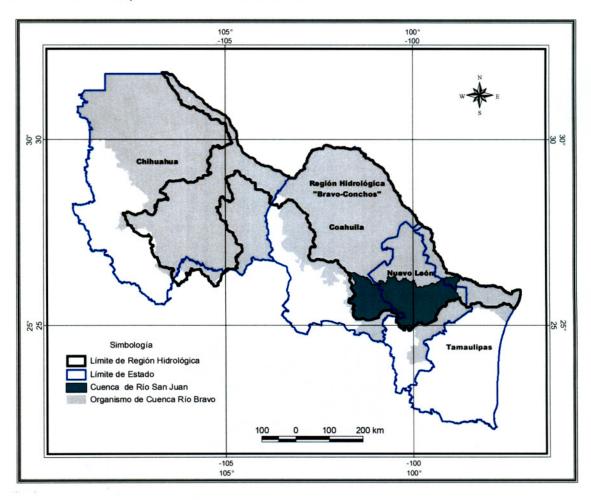


Figura 1.- Cuenca del Río San Juan, parte de la cuenca del Río Bravo.

En esta cuenca se localizan una cantidad considerable de pequeñas presas, presones y bordos que van de los 100 mil a un millón de metros cúbicos de capacidad de almacenamiento, sin embargo este trabajo va encaminado al análisis de las presas de almacenamiento Rodrigo

Gómez "La Boca" en el municipio de Santiago y la presa el Cuchillo-Solidaridad en el municipio de China, ambas en el estado de Nuevo León.

En las figuras 2 y 3 se muestran fotografías de las dos presas motivo del presente trabajo.

Figura 2.-Presa Rodrigo Gómez, "La Boca", 24 de septiembre de 2003

Figura 3.- Presa El Cuchillo, 24 de septiembre de 2003

Con base en la información de precipitación pluvial de 50 estaciones climatológicas y un Observatorio Meteorológico de diferentes períodos de registro, con el promedio mensual se obtuvo la precipitación promedio anual para cada estación, de este análisis se determinó que el régimen de precipitación pluvial en la cuenca del río San Juan es de 582.6 mm anuales, con valores máximos de 1128.3 mm que se registran en promedio anual en la estación climatológica Cola de Caballo (fuera de operación) estación que se localizaba en la parte media de la cuenca de la presa La Boca y valores mínimos de 204.0 mm en la estación climatológica lcamole que se localiza en la subcuenca del río Pesquería.

Los meses en que se presenta la mayor cantidad de precipitación son septiembre, agosto y octubre, Figura 4, sin embargo por la influencia de fenómenos hidrometeorológicos extremos como lo son remanentes de ciclones tropicales, frentes fríos y células convectivas, las entradas más importantes de agua a las presas de almacenamiento La Boca y El Cuchillo, N. L. están sujetas a lluvias de tipo ciclónico y a las provocadas por los primeros frentes fríos de cada temporada invernal, por lo que es necesario la revisión de la avenida de diseño con el objetivo de verificarla y en su caso proponer las modificaciones de las características de cada embalse, para establecer las políticas de operación más adecuadas, de tal forma que se reduzcan daños a la población por una mala operación en situaciones de llenados rápidos.

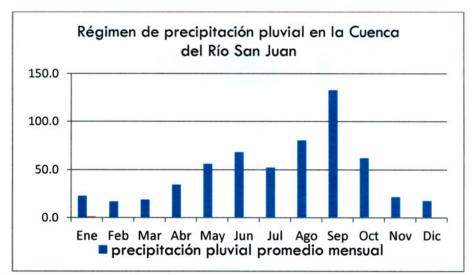


Figura 4.- Régimen de precipitación pluvial en la cuenca del río San Juan

1.1.2.-Situación legal de la cuenca del Río San Juan.

La situación legal en que se encuentra esta cuenca está sustentada en una veda y una serie de acuerdos entre los gobiernos de los estados de Nuevo León y Tamaulipas con el aval del Gobierno Federal por conducto de la Comisión Nacional del Agua, a saber:

1.1.3.- Decreto de Veda de 1952

Con fecha 2 de julio de 1952, se publicó en el Diario Oficial de la Federación, un acuerdo presidencial que estableció veda por tiempo indefinido para el otorgamiento de concesiones de aguas del río San Juan, en el estado de Tamaulipas y de toda su cuenca tributaria, aguas arriba de la presa Marte R. Gómez.

1.1.4.-Acuerdos de coordinación

Monterrey, N. L., 9 de octubre de 1989.-Acuerdo sobre la construcción y operación de las obras del programa Monterrey IV.

México, D. F., 6 de septiembre de 1990.-Acuerdo en el cual el Ejecutivo Federal y los estados libres y soberanos de Nuevo León y Tamaulipas, realizan un programa para el aprovechamiento de la cuenca del río San Juan, con el objeto de satisfacer demandas de agua para usos urbanos e industriales de la ciudad de Monterrey y preservar las de usos múltiples del Distrito de Riego No. 026, en el estado de Tamaulipas.

México, D. F. 19 de enero de 1996.- Minuta de consensos que a través de sus respectivos ejecutivos locales, Lic. Sócrates Rizzo García y Lic. Manuel Cavazos Lerma, celebran en relación al aprovechamiento de las aguas del río San Juan.

México, D. F. 13 de noviembre de 1996.- Acuerdos en que la Comisión Nacional del Agua, el estado de Nuevo León, el estado de Tamaulipas, Servicios de Agua y Drenaje de Monterrey, I.P.D.; y las Asociaciones Civiles de Usuarios del Distrito de Riego No. 026 Bajo Río San Juan, con relación al aprovechamiento de las aguas del río San Juan.

En los acuerdos del 13 de noviembre de 1996, se establece la política de operación de tres presas entre las cuales están la presa La Boca, El Cuchillo-Solidaridad y la presa Cerro Prieto ubicada esta última en la cuenca del río San Fernando en la RH 25, esta política de operación está dada en el volumen que se puede extraer de cada una de las presas con el fin de abastecer a la zona metropolitana de Monterrey, sin embargo, de la revisión de los documentos que forman parte la situación legal de esta cuenca, se ha determinado que no existe un mecanismo legal-operativo que permita a las autoridades locales de la Comisión Nacional del Agua llevar a cabo la extracción de agua de las presas La Boca y el Cuchillo por los vertedores ante situaciones de emergencia provocadas por llenados rápidos por efectos de fenómenos hidrometeorológicos extremos, la operación se sustenta en los acuerdos que emite el Comité Técnico de Operación de Obras Hidráulicas (CTOOH).

1.2.- Información general de la presa El Cuchillo-Solidaridad.

1.2.1.- Localización geográfica.

La presa El Cuchillo-Solidaridad construida sobre el río San Juan, está ubicada 3 km al noroeste de la población de China del Estado de Nuevo León, en el punto de coordenadas 25° 43' de latitud norte y 99° 17' de longitud oeste de Greenwich.

1.2.2.-Finalidad y breve descripción de la obra.

El objetivo de la construcción de esta presa es el abastecimiento de agua a la zona metropolitana de la ciudad de Monterrey, así como a los Municipios de China, General Bravo, Dr. Coss y Los Aldama, del Estado de Nuevo León y algunas poblaciones del municipio de Miguel Alemán, Tamaulipas, preservar los usos múltiples del Distrito de Riego 026 "Bajo Río San Juan" y asegurar el riego de 3,640 ha del Distrito de Riego 031 "Las Lajas".

La presa consiste de una cortina de materiales graduados de 4 480.0 m de longitud, 44.0 m de altura máxima, 10.0 m de ancho en la corona, con un tramo central de 320.0 m de longitud, con sección de gravedad de concreto, donde está alojada la estructura vertedora. Cuenta con un dique de 6 000 m de longitud, 8.0 m de ancho y una sección máxima de 35 m de altura.

Característica	Capacidad (Mm³)	Área de Embalse ha	Elevación msnm
NAME	1,784.292	16,626.724	166.66
NAMO	1,123.143	12,794.891	162.35
NAMINO	202.320	3,949.166	150.76

Tabla 1.- Capacidades de la presa El Cuchillo-Solidaridad

1.2.3.-Hidrología

La presa El Cuchillo se localiza en la Región hidrológica Núm. 24. Bajo Bravo y San Juan, el área de la cuenca del río San Juan hasta el sitio de la presa es de 8 924 km 2 , figura No. 5, el gasto máximo observado es de $7\,500\,\mathrm{m}^3/\mathrm{s}$, la avenida de diseño es de $15\,000\,\mathrm{m}^3/\mathrm{s}$, para un período de retorno de 10,000 años.

1.2.4.-Obra de Excedencias

Consiste de un vertedor perfil Creager de 91 m de longitud de la cresta, controlado mediante 7 compuertas radiales alojadas en seis pilas de concreto, de 13 m de ancho por 16 m de altura. La obra de excedencias tiene una capacidad máxima de descarga de 10 477 m³/s.

1.2.5.-Obras de Toma

Obra de toma para Monterrey.- Es la toma principal, donde se alojan cuatro compuertas deslizantes, localizadas a diferentes elevaciones, 147.64 m (toma 1), 151.54 m (toma 2) y las otras dos en las caras laterales, con sus umbrales a las elevaciones 155.44 m (toma 3) y 159.34 (toma 4). Esta obra de toma tiene capacidad para un gasto de diseño de 10.0 m3/s.

Toma para Sistema Regional.- Esta toma abastece de agua a los poblados de China, General Bravo, Dr. Coss, Los Aldama en Nuevo León y Arcabuz en Tamaulipas; el acueducto tiene una capacidad de diseño de 250 lps. Amas obras de toma son operadas por el organismo operador Servicios de Agua y Drenaje de Monterrey.

Toma para riego.- Se encuentra en la margen derecha de la sección de gravedad, el gasto es controlado mediante una válvula de chorro divergente con capacidad de 28 m3/s la cual descarga a un canal hasta el cauce del río San Juan.

ANTE LA INFLUENCIA DE FENÓMENOS HIDROMETEOROLÓGICOS EXTREMOS.

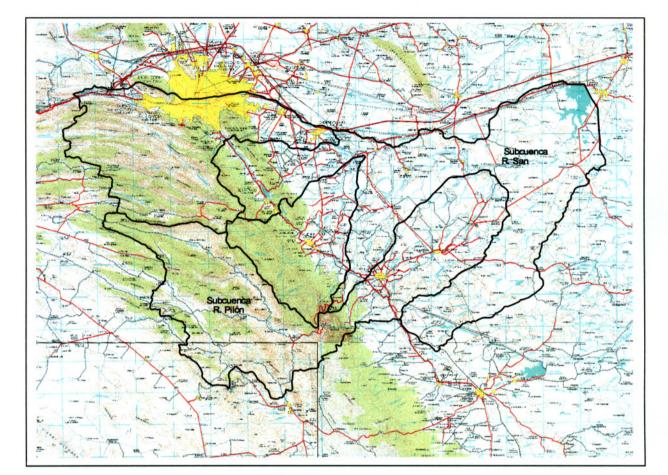


Figura 5.- Cuenca de la presa el Cuchillo-Solidaridad

1.3.- Información general de la presa La Boca.

1.3.1.- Localización geográfica.

Está situada en las coordenadas 25° 26' 45" de latitud norte y 100° 07' 30" de longitud oeste, sobre el río San Juan a unos 3 km aproximadamente aguas arriba del rancho Los Canelos en el municipio de Santiago, N.L.

1.3.2.-Finalidad y breve descripción.

Esta presa forma parte del sistema de abastecimiento de agua potable para la ciudad de Monterrey y su área metropolitana. La cortina se construyó sobre una cortina anterior de menor tamaño para obtener una capacidad de 43.6 millones de m³. Consiste en una cortina de concreto (gravedad) de 290 m de longitud, 4.0 m de ancho en la corona y una altura máxima

de 34.0 m. Se construyó en el periodo de 1958-1961 y en 1985 se sobre elevaron las compuertas 1.0 m para aumentar la capacidad de almacenamiento.

Las capacidades de almacenamiento que se venían considerando tanto para el almacenamiento total, el cálculo del almacenamiento útil, el volumen mínimo de operación eran los obtenidos de unas curvas de áreas y capacidades de 1985 cuyos datos se muestran en la Tabla 2.

Característica	Capacidad (Mm³)	Área de Embalse ha	Elevación msnm
NAME	46.06	558.0	449.200
NAMO	41.00	540.0	448.540
NAMINO	5.580	105.4	435.000

Tabla 2.- Capacidades de la presa La Boca

1.3.3.- Hidrología

La cuenca de esta presa se localiza en la Región Hidrológica No. 24 Bajo Bravo y San Juan, Figura 6.

El área de la cuenca hasta la cortina es de 266 km²

El gasto máximo registrado es de 1157.0 m³/s; la capacidad máxima del vertedor es de

2 250.0 m³/s para un período de retorno de 10 000 años.

1.3.4.- Obra de Control y Excedencias

La obra de control se ubica en el cuerpo de la cortina; tiene un cimacio en perfil Creager, controlado por 10 compuertas radiales, de 7.0 m ancho y 8.0 m de altura, la cresta del vertedor tiene una longitud efectiva de 70.0 m y se localiza en la elevación de 441.44 msnm; la capacidad de la obra de excedencias 2 250 m³/s para un período de retorno de 10 000 años.

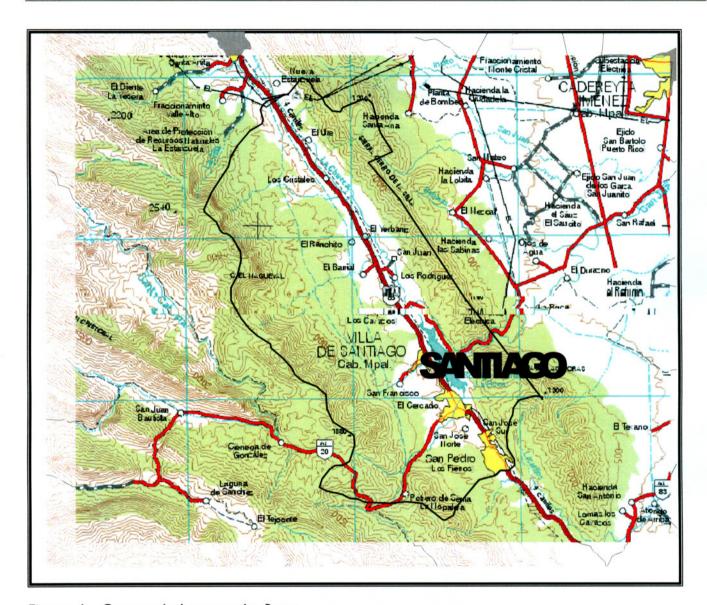


Figura 6.- Cuenca de la presa La Boca

1.3.5.- Obra de toma para agua potable

Está formada por una torre de operación adosada al paramento de aguas arriba de la cortina, en la parte inferior se localizan 2 compuertas deslizantes para emergencia y operación con dimensiones de 1.80 por 1.80 m; a fin de obtener la mejor calidad del agua dispone también de 3 compuertas localizadas en las elevaciones 432.75, 438.04 y 444.00 m. El gasto de diseño 1.63 m³/s. (boletín hidrológico No. 27, tomo II de la Secretaría de Recursos Hidráulicos)

1.3.6.- Levantamiento topobatimétrico

Durante el año 2004 la Comisión Nacional del Agua contrató un estudio con el objetivo de llevar a cabo el levantamiento topobatimétrico con el fin de obtener los planos actualizados de la configuración subacuática y de los terrenos adyacentes al vaso, la actualización de las curvas y tablas de elevaciones-áreas —capacidades del vaso y determinar la distribución y depósito de sedimentos, con el objeto de cuantificar la capacidad total, útil, para el control de avenidas y para azolves (capacidad muerta), además de la influencia de azolvamiento en el funcionamiento hidráulico e hidrológico de la presa y sus estructuras, así como su repercusión en el programa de suministro de agua para los fines que fue construida. Así mismo, durante los trabajos, se relocalizó el trazo del polígono que delimitó los terrenos que se expropiaron para la construcción de la presa, identificando las zonas que han sido invadidas por asentamientos humanos.

Estos trabajos se llevaron a cabo mediante Contrato No. GT-GRRB-NL-04-070-CE-13 que sostuvo la Comisión Nacional del Agua y la empresa ARINFO, S. A.

Con los resultados obtenidos en este levantamiento, se determinó la nueva curva de inundación que resulta debido a las invasiones existentes, con la cual se estableció la zona de protección correspondiente y se monumentaron los vértices topográficos que la conforman.

1.3.6.1 Conclusiones:

- 1.- El nivel de fondo original de la presa en el año de 1962 (inicio de operaciones) fue de 416.54 msnm, el nivel actual del fondo de la presa está en la cota 423.60, lo que representa una acumulación de azolves de 7 metros en 42 años.
- 2.- El nivel de la entrada de la obra de toma baja está en la cota 425.74 lo que representa una diferencia con el fondo actual de 2.14 m.
- 3.- El nivel más bajo de la obra de toma para agua potable es de 432.75 msnm por lo que actualmente hay una diferencia de 9 con el fondo del cauce.
- 4.- La capacidad muerta se ha reducido de 430,000 m3 a 100,000 m3.
- 5.- La capacidad útil (a la cresta del vertedor) se ha reducido de 15.31 Mm3 a 13.66 Mm3.
- 6.- La capacidad de superalmacenamiento (al NAME) se ha reducido de 29.25 Mm3 a 28.87 Mm3.
- 7.- En su capacidad total la presa ha perdido de 44.99 Mm3 a 42.63 Mm3 dando un total de 2.36 Mm3.
- 8.- Con respecto a las secciones comparativas se deduce que la mayor parte de los azolves se concentran en las cercanías de la cortina de la presa.

- 9.- Haciendo un análisis del polígono de expropiación contra la zona delimitada por 10 m fuera del NAME que resulta de este estudio se tiene lo siguiente:
 - La superficie que está fuera del polígono de expropiación y que si está en situación de riesgo es de 37-38-89 Ha.
 - La superficie que está fuera de la zona delimitada por la franja de 10 m fuera del NAME y que está delimitada dentro del polígono de expropiación existente es de 16-89-68 Ha.
 - ❖ Las 212 construcciones que actualmente se encuentran en el área de protección ocupan una superficie de 21,119 m².
 - Las 289 construcciones que se encuentran en el área de protección definida por la franja de 10 m fuera del NAME representa una superficie de 29,096 m2.
 - ❖ El área que comprende el polígono de expropiación es de 496-15-25 Ha.
 - El área que comprende el polígono definido por la franja de 10 m fuera del NAME es de 516-64-46 Ha.

10.-La presa no presenta graves problemas de azolve, el funcionamiento hidráulico es adecuado y la pérdida de capacidad sólo representa un 5% del total.

- 1.3.6.2.- Recomendaciones del estudio de topobatimetría.
- 1.- Continuar el monitoreo de la evolución de los azolves tomando como referencia las secciones transversales ubicadas con los monumentos colocados en el presente estudio. Se recomienda que este monitoreo se realice una vez cada año. Se calcula que de seguir la tendencia actual de acumulación de azolves se vería afectada la obra de toma baja en un período de 11 años.
- 2.- Cuidar la reforestación de la zona aledaña al vaso para evitar una mayor erosión de la cuenca que incide directamente en el vaso, que provoque un incremento en la cantidad de azolve por año.
- 3.- Efectuar un estudio detallado de la zona de protección definida por el polígono de expropiación, debido a la existencia de construcciones que están en riesgo de ser afectadas en una probable inundación a la cota del NAME.
- 4.- actualizar la información de los valores de la curva de elevación-áreas-capacidades con las de este estudio, previa validación de la CNA Tabla 3.

Característica	Capacidad (Mm³)	Área de Embalse ha	Elevación msnm	
NAME	42.628	486.361	449.200	
NAMO	39.490	466.870	448.540	
NAMINO	3.495	86.000	435.000	

Tabla 3.- Capacidades como resultado del estudio realizado en el año 2004

1.4.- Planteamiento del problema en la presa La Boca.

Para evitar daños a la población que se localiza aguas abajo de cada una de las presas así como a la infraestructura existente, es necesario conocer con detalle cual es la seguridad hidrológica que tiene cada una de ellas, para lo cual será necesario realizar los análisis hidrológicos para revisar la avenida de diseño, revisar las capacidades de cada presa, determinar la necesidad de realizar estudios batimétricos, con el fin de proponer políticas de operación, no solo para el abastecimiento a las ciudades y usos agrícolas sino para otorgar seguridad durante las extracciones de agua por vertedor en situaciones de emergencia.

En el caso de la presa La Boca con base en las recomendaciones del estudio topobatimétrico es necesario revisar cada año el acumulamiento de azolves, porque de acuerdo con las capacidades que resultaron en el estudio, la obra de toma baja está a solo 2.14 m para que se azolve y si bien es cierto esta toma que fue diseñada para riego no se ha utilizado para este fin, se ha usado para desalojar parte de las aguas "fósiles" localizadas en la parte baja del embalse y para poder operar esta toma, fue necesario realizar trabajos de mantenimiento y reparación a las dos válvulas de compuerta de 24", que consistió en desmontar uno de los vástagos de bronce porque no estaba completamente vertical, se fabricó otro igual y se sustituyó en la válvula, después se engrasaron y se operaron abriéndolas y cerrándolas para que se despegaran y de esta manera poder realizar el desfogue de lodos, azolves y agua fósil.

Con respecto a la capacidad destinada para el control de avenidas resultante del mismo estudio, si bien es cierto que la capacidad de almacenamiento entre la cresta del vertedor y la capacidad máxima al NAME es de 28.968 Mm³, la diferencia entre las capacidades al NAMO y NAME es de solo 3.128 Mm³, esta capacidad resulta insuficiente, sin embargo esto se corroborará con la revisión hidrológica que se hará para esta presa.

El volumen promedio en el que se mantiene esta presa ya sea por escurrimientos de la cuenca propia y o por las aportaciones que se le hacen de manera artificial con agua que viene de la presa Cerro Prieto por el acueducto Linares Monterrey a través de la planta de Bombeo No 4, ha oscilado en: 31.4 Mm3, Figura 7, por lo que la capacidad destinada al control de avenidas es en promedio de 11.228 Mm³, sin embargo en los meses en los que se presenta la mayor cantidad de lluvias en la cuenca propia de la presa La Boca, ocurre en los meses de septiembre, agosto y junio, Figura 8, las entradas al vaso son tan importantes que obligan a que se tenga

que implementar vigilancia extrema para evitar cualquier tipo de tragedia y llevar a cabo extracciones por el vertedor cuando ha sido necesario.

Figura 7.- Evolución del almacenamiento

Figura 8.- Régimen de precipitación pluvial

Como se mencionó en el los antecedentes, la capacidad máxima de la obra de excedencias es de 2 250 m³/s, el problema principal se tiene aguas abajo de la cortina de la presa, ya que la capacidad de conducción del río San Juan tiene limitaciones para poder conducir gastos máximos. Lo más probable es que antes de la construcción de la presa, el río podía conducir los gastos que se producían después de una tormenta asociada a Tr=50 años, sin embargo, esta es una consideración que se tiene que tomar en cuenta en la actualidad ya que en el diseño de los vertedores de las presas cuando se hacen los estudios hidrológicos para determinar la capacidad de descarga, se toma en consideración solo la seguridad hidrológica pero desde el punto de vista estructural de la presa y por lo general no se considera si la capacidad del río aguas abajo tiene la capacidad suficiente para poder efectuar un buen manejo de las descargas máximas.

En el caso de la presa de La Boca, el problema es más agudo ya que aparte de que el río no tiene la capacidad suficiente, éste se encuentra invadido por diferentes tipos de infraestructura, como lo es una planta de tratamiento de aguas residuales, como por construcciones en el cauce y zona federal del río, vados, puentes etc. Lo que limita la libre operación del vertedor de la presa ante la presencia de llenados rápidos de tal manera que la capacidad máxima sin provocar daños es del orden de los 560 m³/s.

En septiembre de 2002, ocurrió un evento hidrometeorológico extremo el que por sus consecuencias, motivó a desarrollar un trabajo que sirva como un manual de operación ante la influencia de fenómenos hidrometeorológicos extremos, si bien es cierto con la tecnología actual es más fácil detectar la formación de ciclones tropicales, darles seguimiento y pronosticar su impacto en tierra con la suficiente anticipación para que la población pueda ponerse segura,

también existen fenómenos que no son fácil de pronosticar mucho menos con la suficiente anticipación para poder dar aviso a las autoridades de Protección Civil y de Seguridad en general para resguardar a la población, tal es el caso ocurrido en septiembre de 2002 cuando el pronóstico meteorológico para el día 15 de septiembre indicaba la posibilidad de que se presentaran lluvias, con algunas lluvias de ligeras a moderadas en forma aislada y chubascos ocasionales, principalmente por la tarde y noche, acompañados de tormenta eléctrica, vientos débiles a moderados del sureste.

Este reporte elaborado en la entonces Subgerencia Técnica para los días 14, 15 y 16 de septiembre de 2002 consideraba la posibilidad de que ocurriesen lluvias de ligeras a moderadas, pero era difícil pronosticar la cantidad de lluvia que se presentaría y mucho menos la intensidad de la misma.

El 15 de septiembre de 2002, el almacenamiento total a las 06:00 horas era de 36.150 Mm³, a las 17:00 horas del mismo el volumen se había incrementado a 36.780 Mm³ pero a partir de esa hora iniciaron las lluvias aumentando su intensidad durante el resto de la tarde y noche lo que ocasionó un llenado rápido como lo muestra la Figura 9.

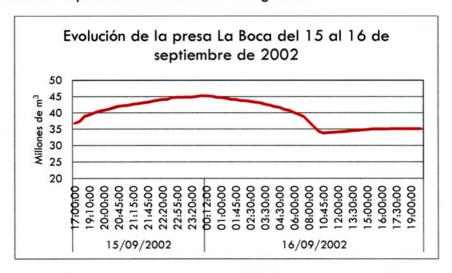


Figura 9.- Evolución del almacenamiento del 15 al 16 de septiembre de 2002.

Este llenado rápido trajo como consecuencia la extracción de caudales por el vertedor de la presa de una forma que no hubo oportunidad de avisar con el tiempo suficiente a la población quedando atrapados entre la margen derecha del río y el cerro ocho personas, por lo que las autoridades de Protección Civil solicitaron suspender la extracción para poder rescatar a las personas, acción que se logró como a las 22:30 hr. Figura 10, y a partir de esa hora se reiniciaron las operaciones a tal grado que con el caudal máximo se destruyó parte de la carretera y parte de la planta de tratamiento.

Sin embargo, no solo estas limitaciones se tienen para poder operar el vertedor de la presa sino que como se mencionó anteriormente, en el propio río, no existe la suficiente capacidad de conducción, por ejemplo en un tramo del río cerca de la comunidad de los Canelos, se hizo un tránsito de avenida para determinar el límite de la zona federal, en este sitio de acuerdo a los resultados del estudio hay una sección crítica en donde con un gasto de 564 m³/s equivalente a un Tr=20 años, existe desbordamiento, como se muestra en las figuras 11, 12, 13 y 14.

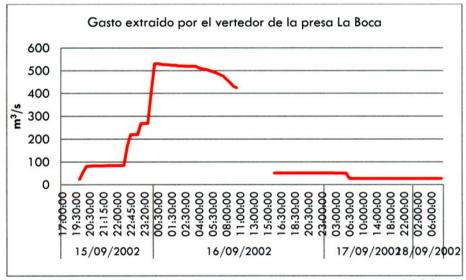


Figura 10, Operación del vertedor de la presa La Boca, septiembre de 2002.

Figura 11.- Sitio Los Canelos sobre el río San Juan aguas debajo de la presa La Boca.

								HEC-RAS	Plan: Plan	02 River:	San Juan I	Reach: Los C
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Ch
		V 3 1	(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Los Canelos		Tr20	564.00		380.11	379.88			4.26			
	9	Tr50	717.00	376.09	380.50	380.33	381.58	0.007566	4.60			
Los Canelos	9	Tr100	827.00	376.09	380.75	380.60	381.94	0.007651	4.83	171.22	62.59	0.9
Los Canelos	8	Tr20	564.00	375.86	379.97		380.88	0.007380	4.22	133.59	58.51	0.8
Los Canelos	8	Tr50	717.00	375.86	380.36	380.18	381.42	0.007492	4.56	157.32	61.78	0.9
Los Canelos	8	Tr100	827.00	375.86	380.62	380.46	381.78	0.007591	4.78	173.09	63.73	0.9
Los Canelos	7	Tr20	564.00	375.84	379.84	379.62	380.73	0.007265	4.17	135.12	58.63	0.8
Los Canelos	7	Tr50	717.00	375.84	380.23	380.02	381.27	0.007443	4.52	158.51	61.76	0.9
Los Canelos	7	Tr100	827.00	375.84	380.47	380.30	381.62	0.007624	4.76	173.81	63.72	0.9
Los Canelos	6	Tr20	564.00	375.98	379.80		380.56	0.005864	3.86	146.04	61.49	0.8
Los Canelos	6	Tr50	717.00	375.98	380.20		381.09	0.006072	4.18	171.71	65.99	0.8
Los Canelos	6	Tr100	827.00	375.98	380.46		381.43	0.006152	4.37	189.05	68.22	0.8
Los Canelos	5	Tr20	564.00	375.97	379.76		380.42	0.004789	3.61	156.44	62.79	0.7
Los Canelos	5	Tr50	717.00	375.97	380.16		380.95	0.005174	3.92	182.68	68.43	0.7
Los Canelos	5	Tr100	827.00	375.97	380.42		381.29	0.005285	4.11	201.11	71.20	0.7
Los Canelos	4	Tr20	564.00	375.55	379.77		380.30	0.003492	3.23	174.58	65.04	0.6
Los Canelos	4	Tr50	717.00	375.55	380.17		380.81	0.003849	3.55	201.82	69.99	0.6
Los Canelos	4	Tr100	827.00	375.55	380.43		381.15	0.003985	3.75	220.50	72.13	0.6
Los Canelos		Tr20	564.00	375.52	379.68		380.23	0.003913	3.28	171.79	68.22	0.6
Los Canelos		Tr50	717.00	375.52	380.08		380.74	0.004144	3.58	200.39	72.93	0.6
Los Canelos	3	Tr100	827.00	375.52	380.35		381.07	0.004213	3.76	220.07	75.09	0.7
Los Canelos	2	Tr20	564.00	375.23	379.55	378.96	380.14	0.004450	3.39	166.17	69.21	0.7
		Tr50	717.00	375.23	379.95		380.64	0.004585	3.68	194.68	73.15	0.7
Los Canelos	2	Tr100	827.00	375.23	380.22		380.98	0.004623	3.86	214.30	75.28	0.7
Los Canelos		Tr20	564.00	375.48	378.96	378.96	379.97	0.009819	4.45	126.77	63.79	1.0
Los Canelos		Tr50	717.00	375.48	379.36	379.36			4.68		68.51	
Los Canelos	1	Tr100	827.00	375.48	379.61	379.61	380.81	0.009146	4.85	170.59	71.51	1.0

Figura 12.- Resultados del estudio para determinar la capacidad del cauce y establecer los límites federales.

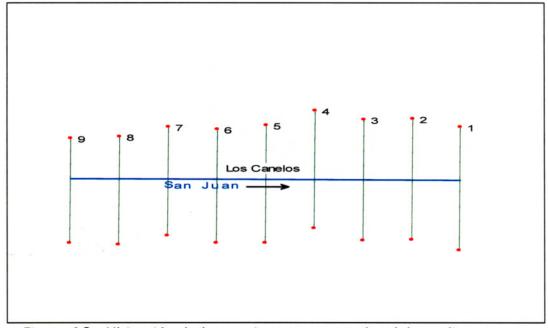
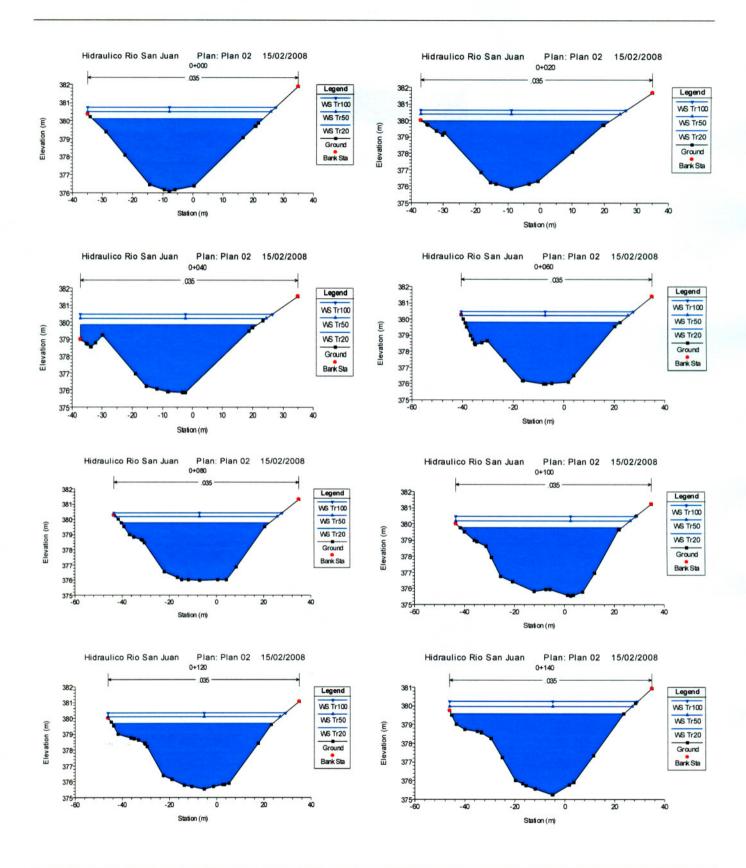



Figura 13.- Ubicación de las secciones transversales del estudio

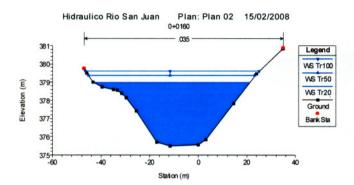
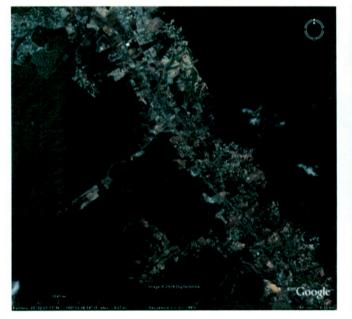



Figura 14.- Secciones transversales del tránsito de avenida en el sitio de Los Canelos.

Otro de los problemas que se han observado es que la parte baja de esta cuenca se ha venido modificando la cobertura vegetal por el crecimiento de casas habitación que en principio eran casas de campo, ahora ya existen grandes fraccionamientos en la parte baja y media de la cuenca, esto provocará un cambio en el comportamiento hidrológico ya que habrá mayor arrastre de azolves lo cual ocasionará que en un menor tiempo el acarreo de azolves sea mayor que la cantidad que se ha acumulado desde que se construyó la presa hasta el estudio topobatimétrico recién elaborado.

La modificación de la cobertura vegetal y del cambio en el uso del suelo de la cuenca, provocará menores tiempos de traslado de tal forma que los llenados rápidos se presentarán más frecuentemente. Figuras 15 y 16.

Figuras 15 y 16.- Parte media de la cuenca de La Boca y parte del vaso.

1.5.- Planteamiento del problema en la presa El Cuchillo-Solidaridad.

En el caso de la presa El Cuchillo, la problemática es distinta ya que no existe el problema de llenados rápidos en virtud de que las dimensiones de su infraestructura permiten regular bastante bien las avenidas provocadas por fenómenos hidrometeorológicos extremos, sin embargo como siempre ocurre, después de la construcción de una presa y más de estas dimensiones, aguas abajo el cauce se empieza a estrangular por diversas causas, las avenidas ya no son las mismas porque dejan de ser naturales para convertirse en extracciones controladas. Esto ha ocasionado que se construyan puentes más bajos con menor capacidad hidráulica limitando de alguna manera la capacidad reguladora del río San Juan en su recorrido hacia la presa Marte R. Gómez en el estado de Tamaulipas.

Es importante conocer el resultado de la revisión hidrológica de la presa para conocer con certeza si las capacidades que actualmente están establecidas, son suficientes para el control de avenidas, para cumplir con los compromisos de suministro de agua ya establecidos y determinar la necesidad de llevar a cabo estudios de topobatimetría.

Las políticas de operación que existen están sustentadas en los Acuerdos del 13 de noviembre de 1996 y particularmente en su Anexo 5 el cual serviría como base para la elaboración del Reglamento de Operación de la Cuenca del Río San Juan. Estas políticas establecen en su numeral 6 que para el caso específico de la presa El Cuchillo-Solidaridad se considerará una extracción de 5 m³/s, en una primera etapa y de otros 5 m³/s en una segunda etapa para alcanzar un máximo de 10 m³/s, con el fin de abastecer a la zona metropolitana de la ciudad de Monterrey, incluyendo al Acueducto Regional China-Los Aldama- Arcabuz, garantizándose con esto y el resto de las fuentes existentes el abastecimiento de agua a Monterrey. (Acuerdo de Coordinación, 13 noviembre 1996)

En el numeral 14 del anexo 5 inciso c), establece que la extracción anual de la presa El Cuchillo-Solidaridad será complementaria de las fuentes anteriores, y considerará un almacenamiento mínimo de 168.5 Millones de metros cúbicos. Cuando la disponibilidad para los usos urbanos e industriales de la ciudad de Monterrey y su zona metropolitana no tenga restricciones.

Este volumen de extracción deberá considerar los requerimientos del Distrito de Riego 031 Las Lajas Nuevo León, así como los volúmenes que se transfieran a la presa Marte R. Gómez en Tamaulipas.

En el numeral 20 del anexo 5, se establece que la extracción de los volúmenes excedentes de la presa El Cuchillo en sus etapas de operación de hará de la siguiente manera: Al día 1 de octubre de cada año, en la primera etapa (un solo acueducto) se transferirá hacia la presa Marte R. Gómez el volumen excedente a 315 Millones de metros cúbicos, en la segunda etapa (dos acueductos) se transferirá hacia la presa Marte R. Gómez el volumen excedente a 516 Millones de metros cúbicos, en ambos casos, siempre que la presa Marte R. Gómez tenga un volumen menor a 700 Millones de metros cúbicos. (Anexo 5, Acuerdo de Coordinación, 13 de noviembre de 1996)

Con base en la revisión de la información hidrométrica disponible derivado de la Estación Hidrométrica El Cuchillo la cual se localiza a 3 km aguas abajo del eje de la cortina de la presa El Cuchillo, se desprende que el escurrimiento medio anual de 1927 a julio de 1994 (cierre de la cortina del Cuchillo), el volumen es de 656 Mm³, Figura 17 y la evolución del volumen al día 1 de cada mes en promedio refleja un valor muy similar al promedio de escurrimiento anual de 636 Mm³, Figura 18.

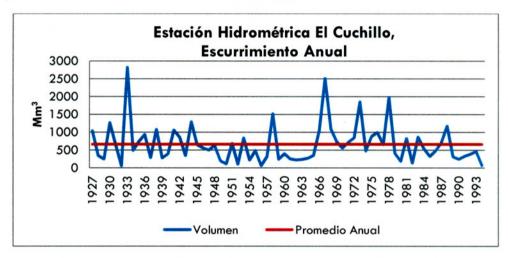


Figura 17.- Escurrimiento anual en la Estación Hidrométrica El Cuchillo.

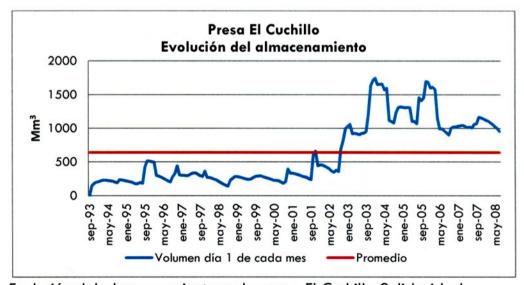


Figura 18.- Evolución del almacenamiento en la presa El Cuchillo-Solidaridad.

Sin embargo las entradas totales al vaso obtenidas a través del funcionamiento del vaso del período de 1994 a 2008, es de 568.9 Mm3 en promedio en este período, valor inferior al resultado de los escurrimientos históricos medidos en la Estación Hidrométrica EL Cuchillo, Figura 19.

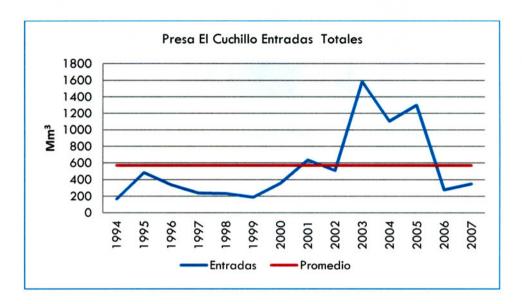


Figura 19.- Entradas totales al vaso de la presa El Cuchillo.

Como se podrá observar en la evolución del almacenamiento y en las entradas totales al vaso, a partir del año 2002, el volumen se incrementa de manera muy por arriba del que se había registrado en el período anterior, esto como consecuencia de las aportaciones de agua ocasionadas por remanentes de ciclones tropicales, celdas convectivas de mesoescala y a los primeros frentes fríos de cada temporada otoño invierno.

Si bien es cierto que la capacidad destinada para el control de avenidas de esta presa es de 661.1 Mm³, esta capacidad debe ser utilizada de manera temporal y poder hacer las extracciones de control por el vertedor de tal manera que no se ocasionen problemas aquas abajo, sin embrago los llenados que se registraron a partir 2002, por instrucciones superiores fue necesario mantener la capacidad de control de avenidas ocupada no solo después de la temporada de lluvias sino durante la propia temporada de lluvias, lo cual en caso de haberse presentado lluvias intensas en la cuenca hubiese sido necesario hacer extracciones de control extraordinarias ocasionando severos daños aguas abajo de esta presa.

De acuerdo a los compromisos de esta presa hacia la presa Marte R. Gómez, en cumplimiento con los acuerdos del 13 de noviembre de 1996, se han llevado a cabo trasvasos de agua como se muestra en la Tabla 4, los gastos que se establecieron en los trasvasos de 1996 a febrero de 2003, aunque fueron elevados, no se ocasionó mayor problema porque se hicieron en su mayoría en corto tiempo ya que lo que se buscaba era tener una mayor eficiencia en el trasvaso del volumen de la presa EL Cuchillo a la presa Marte R. Gómez, durante este período los gastos más altos son de 509 m³/s y con este caudal se interrumpe la comunicación entre la población que existe en ambos lados del río San Juan; y las operaciones realizadas de septiembre de 2003 a 2006, obedecen a el control de avenidas, y como en estos casos no se busca tener una

eficiencia alta, las extracciones de control se hicieron de tal manera que no se interrumpiera la comunicación limitando las extracciones a gastos no mayores a 100 m³/s. ya que existen 4 vados entre las presas El Cuchillo y Marte R. Gómez los cuales tienen capacidades limitadas, siendo el más afectado el que comunica a la población de San Pedro con la cabecera municipal de Dr. Coss, N. L. en donde sólo puede transitar un gasto máximo de 90 m³/s. Figura 20.

	VOLUMEN			
PERIODO	TRASVASADO Mm ³			
DEL 5 AL 6 DE ENERO DE 1996	7.700			
DEL 20 AL 27 DE ENERO DE 1996	183.700			
DEL 23 AL 27 DE NOV DE 1996	135.900			
DEL 14 AL 19 DE NOV. DE 1997	94.800			
DEL 3 AL 5 DE NOV. DE 2000	68.186			
DEL 5 AL 14 DE NOV. DE 2001	316.030			
DEL 13 AL 17 DE FEB. DE 2003	155.000			
DEL 23 AL 30 DE SEP DE 2003	268.449			
DEL 21 AL 25 DE ENE DE 2004	118.513			
DEL 20 AL 24 DE MAR DE 2004	38.277			
DEL 14 DE ABR AL 6 DE JUN DE 2004	691.325			
DEL 7 DE SEP AL 1 DE OCT DE 2004	274.599			
DEL 30 DE MAR AL 14 DE ABR DE 2005	185.322			
DEL 11 DE AGO AL 5 DE SEP DE 2005	132.713			
DEL 14 DE OCT AL 14 DE NOV DE 2005	191.597			
DEL 21 DE NOV AL 28 DE DIC DE 2005	144.774			
DEL 22 DE FEB AL 9 DE ABRIL DE 2006	532.719			

Tabla 4.- Resumen de trasvasos y extracciones de control.

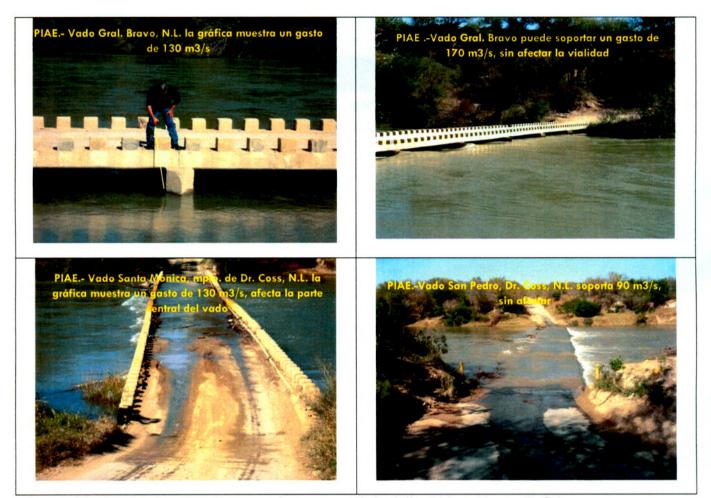


Figura 20.- Vados localizados entre las presas El Cuchillo, N.L. y Marte R. Gómez, Tam. sobre el río San Juan.

1.6.- Objetivo del estudio

El objetivo general del presente trabajo, es hacer la revisión hidrológica de las presas Rodrigo Gómez "La Boca" y El Cuchillo-Solidaridad, para determinar si las capacidades destinadas para el control de avenidas son suficientes de tal manera que se pueda contener y regular la avenida de diseño asociada a un Tr= 10 000 años sin rebasar la capacidad destinada al NAME. En el caso de la presa La Boca en donde no se cuenta con hidrometría a la entrada del vaso, es necesario hacer un análisis de la información de lluvias máximas en 24 horas de las estaciones climatológicas con influencia directa en la cuenca de esta presa, para elaborar un modelo lluvia-escurrimiento que permita calcular los hidrogramas de entrada y de salida del vaso y de esta manera determinar si los niveles y capacidades actuales son suficientes para contener la avenida de diseño. En el caso de la presa El Cuchillo-Solidaridad, se revisará la información hidrométrica en particular de los gastos máximos anuales, y mediante el método de Mayoración (Rivera T. Fabián y Escalante S. Carlos) obtener la avenida de diseño asociada a un Tr= 10 000 años, determinar los hidrogramas de entrada y de salida para determinar si los niveles y capacidades actuales son suficientes para contener y regular la avenida de diseño sin rebasar la capacidad destinada al NAME.

En el caso de la presa La Boca, se contempla la elaboración de un manual de operación ante la influencia de fenómenos hidrometeorológicos extremos.

1.6.1.- Objetivo General

El objetivo general del presente trabajo es comprobar si las capacidades establecidas para los niveles de NAMO y NAME de las presas Rodrigo Gómez "La Boca" y el Cuchillo-Solidaridad son suficientes para transitar la avenida de diseño asociada a un Tr de 10 000 años de período de retorno, esto se lograra mediante la aplicación de los métodos establecidos para cada uno de los casos de estudio, haciendo uso de un modelo lluvia-escurrimiento y mediante la selección de la avenida que presenta el mayor gasto máximo asociado al volumen producido y mediante la mayoración de esta, obtener la avenida asociada a un Tr=10 000 años.

1.6.2.- Objetivos Específicos.

- a).-Elaboración de un Modelo Lluvia-Escurrimiento en la cuenca de la presa Rodrigo Gómez "La Boca" para determinar la avenida de diseño asociada a un período de retorno de 10 000 años.
- b).- Hacer el tránsito de la avenida asociada a un Tr =10 000 años y evaluar las capacidades al NAMO y NAME actuales en las presas Rodrigo Gómez "La Boca" y El Cuchillo-Solidaridad.
- c).- Elaboración de un manual de operación ante la influencia de fenómenos hidrometeorológicos extremos para la presa Rodrigo Gómez "La Boca".

Capítulo 2

REVISIÓN DE LITERATURA

2.1.-Seguridad hidrológica en presas

El hombre desde sus inicios ha construido barreras sobre los ríos, para almacenar controlar o derivar el agua. El lago artificial que se crea aguas arriba de dicha barrera llamada cortina, se denomina vaso de almacenamiento. Cualquiera que sea el tamaño o capacidad de un vaso o el uso final del agua, la función principal de éste es regular el escurrimiento, ahora bien, además de retener el agua para su uso posterior, es común que el vaso tenga cierta capacidad para el control de las avenidas extraordinarias generadas en el río. (Ramírez O., A.I. Aldama R., A. A. 2000)

Para prevenir que la cortina de una presa sea sobrepasada, se diseñan estructuras de desfogue para el desalojo del exceso de agua, a las cuales llamamos obras de excedencia. Estas estructuras son esenciales para el funcionamiento y seguridad de la presa y en muchas ocasiones son estructuras separadas de la cortina. Las obras de excedencia generalmente están formadas por vertedores de cresta libre o vertedores controlados. (Ramírez O., A.I. Aldama R., A. A. 2000).

Para el diseño hidrológico de vasos, el cual entenderemos de aquí en adelante como sinónimo de diseño de las obras de excedencia y capacidad de control de avenidas, es necesario conocer la evolución del flujo en el tiempo. El proceso para la determinación de la evolución del almacenamiento y la evolución de la superficie libre del agua en un vaso, dado un hidrograma de avenida a la entrada del mismo, se conoce como tránsito de avenidas en vasos. Es evidente que el proceso de tránsito depende de las características y tipo de obra de excedencias así como de su política de operación. (Ramírez O., A.I. Aldama R., A. A. 2000)

La estimación de avenidas par el diseño de vasos consiste en la determinación de las características del hidrograma de entrada al vaso, de tal forma que dicha avenida tenga la probabilidad de ser igualada o excedida igual al inverso del período de retorno utilizado para el diseño. En la forma más practicada, una vez definido el período de retorno de diseño, el gasto pico (y solo éste), se estima partir de extrapolación, utilizando para esto función de distribución de probabilidad ajustada a los datos históricos. (Ramírez O., A.I. Aldama R., A. A. 2000).

Debido al envejecimiento de las presas y, en su momento, al uso de técnicas con menor soporte científico, así como al incremento de la información y, en general, a los cambios que se han tenido en el transcurso del tiempo tanto en las presas como su entorno, se requiere evaluar la seguridad hidrológica de las presas de manera periódica

Diversas presas en México fueron diseñadas con información hidrométrica y climatológica insuficiente, (Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F., 2005) algunas veces, o prácticamente inexistente, debido a que se disponía

de pocas estaciones y, a menudo las existentes, no estaban localizadas con adecuación. Aunado a lo anterior, las metodologías empleadas no eran las más aplicables a nuestro país. Por ejemplo, en algunos casos fue necesario recurrir a las curvas envolventes de caudales máximos, calibradas con información de otros países, por ejemplo la presa El Infiernillo, Michoacán con climas diferentes al nuestro. Por otra parte, las condiciones estructurales y operativas contempladas en los diseños originales han variado. Tal es el caso del azolvamiento de embalses, sobreelevaciones de cortina, modificación de la capacidad de vertedores, instalación de compuertas y agujas, cambio de niveles de conservación y de políticas de operación, amén de la construcción de nuevos embalses y cambios en el uso del suelo dentro de las cuencas de aportación de los reservorios, (Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F., 2005)

En no pocas ocasiones, las variaciones enunciadas han incrementado el riesgo hidrológico de los embalses. A pesar de esto, varias se han mantenido en operación durante mucho más tiempo que la vida útil generalmente aceptada para las presas de almacenamiento, alrededor de cincuenta años (Carreola, 2002). En la actualidad, se cuenta con mejores elementos para realizar dicha revisión, utilizando bancos de información de nueva creación. Adicionalmente, las redes de medición en el territorio se han modernizado y obtenido importantes resultados en materia de investigación científica relacionada con la estimación de avenidas de diseño, como lo muestran las publicaciones de investigadores del IMTA (Aldama y Ramírez, 1998a, 1998b; Aldama y Ramírez, 1999; Aldama y Ramírez, 2000; Aldama, 2000; Ramírez y Aldama, 2000; Ramírez, 2001; Aldama y Ramírez, 2003; Aldama y Ramírez, 2005, y Aldama, 2006).

Para fines de control de avenidas, el diseño hidrológico de una presa consiste en determinar el Nivel de Aguas Máximo Extraordinario (NAME), como resultado del evento de la "avenida de diseño". El gasto máximo que sale por el vertedor de demasías se determina simulando el paso de la creciente de diseño por el embalse de la presa, mediante un proceso denominado "tránsito de avenida por el vaso de almacenamiento", (Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F., 2005).

Dicho valor del gasto permite definir la capacidad máxima que deben tener los vertedores. Usualmente, la frecuencia de ocurrencia de la avenida de diseño es la correspondiente al denominado gasto pico. Se habla entonces del periodo de retorno o recurrencia del gasto pico, que significa el tiempo promedio en el que estadísticamente se puede presentar dicho caudal. En las presas grandes, en México, se usa un periodo de retorno de diseño de 10,000 años (GASIR, 2000), (Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F., 2005).

La seguridad de las presas en lo que concierne a la capacidad del vertedor y a la elevación máxima del embalse, depende, en gran medida, de la determinación de una tormenta de diseño y de su conversión a una avenida generada en la cuenca, o bien directamente de la última, y en menor grado de las olas y la marea generadas por el viento. Asimismo, la estabilidad de muros

y terraplenes depende de los estudios hidrológicos e hidráulicos que definen los niveles probables del agua, así como la duración y cambios en el tiempo de dichos niveles. (Aparicio, F.J. 1992),

2.1.1.-Tránsito de Avenidas

Un volumen de escurrimiento procedente de la cuenca alta se mueve hacia aguas abajo como una onda cuya forma se puede calcular mediante una técnica conocida como el cálculo del tránsito de avenidas. El estudio del tránsito de ondas de avenidas a través de embalses y canales se logra mediante muchos métodos que se basan en las ecuaciones de continuidad o conservación de masa y cantidad de movimiento (ecuaciones de St. Venant). (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

$$A \cdot \frac{\partial v}{\partial x} + v \cdot \frac{\partial A}{\partial x} + \frac{\partial A}{\partial t} = q$$

$$\frac{\partial v}{\partial t} + v \cdot \frac{\partial v}{\partial x} + g \cdot \frac{\partial h}{\partial x} + \frac{v \cdot q}{A} = g(s - s_f)$$

Donde t es el tiempo, x la longitud en la dirección del flujo, A el área de la sección transversal, v la velocidad media sobre Aen la dirección x, qel incremento lateral del caudal por unidad de longitud de x, g la aceleración de la gravedad, hla altura media del agua, s la pendiente longitudinal del canal y s_f la pendiente de fricción.

Estas ecuaciones son la base de todos los métodos de cálculo del tránsito de avenidas en ríos y para el caso de los tránsitos de avenidas en vasos, se utiliza comúnmente la ecuación de continuidad y una relación de almacenamiento, así como las leyes de descargas de las obras de toma y de excedencias. Existen dos métodos básicos para calcular el tránsito de avenidas en canales: los métodos hidráulicos y los métodos hidrológicos. Se usan modelos más sencillos para calcular la atenuación de una avenida a través de un embalse.

2.1.1.1.-Método Hidrodinámico completo.-

El tránsito dinámico completo, que tiene en cuenta los efectos de la aceleración del flujo y de la pendiente de la superficie del agua, permite determinar con exactitud las elevaciones de la superficie del agua y los flujos de las siguientes situaciones de flujo variable:

- a).- Movimiento de las ondas aguas arriba, como las que produce la acción de la marea o los oleajes provocados por una tormenta marina;
- b).- efectos de remanso producidos por los embalses o por afluentes ubicados aguas abajo;

- c).- ondas de avenida característica de los ríos con pendientes pequeñas, por ejemplo menos del 0.05 por ciento;
- d).- ondas abruptas causadas por extracciones controladas de embalses o por la rotura de una presa.

El tránsito dinámico generalmente se basa en las ecuaciones hidrodinámicas unidimensionales de flujo variable, denominadas ecuaciones de St. Venant. Estas ecuaciones, antes indicadas, generalmente son expresadas en su forma conservativa y aparecen como sigue:

Continuidad:
$$\frac{\partial Q}{\partial x} + \frac{\partial (A+A_0)}{\partial t} - q = 0$$

Energía:
$$\frac{\partial Q}{\partial t} + \frac{\partial Q^2/A}{\partial x} + gA\frac{\partial h_y}{\partial x} + s_f - qv_x + W_fB = 0$$

Donde:
$$S_f = \frac{n^2 Q}{A^2 R^{413}}$$
 ; $W_f = C_w V_w cos\omega$

Donde Q es el caudal, A el área de la sección transversal activa, A_0 el área de la sección transversal inactiva o de capacidad muerta, h_y la altura de la superficie del agua, v_x es la velocidad del afluente lateral en la dirección x del río, Bel ancho superior del área de la sección transversal activa, n el coeficiente de rugosidad de Manning, Rel radio hidráulico, W_f el efecto del viento, C_w el coeficiente del viento, V_w la velocidad del viento, ω el ángulo entre la dirección del viento y el eje ω del río, mientras que los otros símbolos representan las varibales previamente definidas. (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

2.1.2.- Tránsito de avenidas en vasos.

El tránsito de avenidas en vasos es un procedimiento que sirve para determinar el hidrograma de salida de una presa dado un hidrograma de entrada. Algunas de sus principales aplicaciones son:

- a).- Conocer la evolución de los niveles en el vaso y de los gastos de salida por la obra de excedencias, para saber si la política de operación de las compuertas del vertedor es adecuada y así, al presentarse una avenida, no se pongan en peligro la presa, bienes materiales o vidas humanas aguas abajo.
- b).- Dimensionar la obra de excedencias.
- c).- Fijar el NAME y las dimensiones de las obras de desvío y ataguías

En el tránsito de avenidas en vasos se usa, como en la simulación del funcionamiento de vasos, la ecuación de continuidad:

$$I - O = \frac{dV}{dt}$$

Donde I es el gasto de entrada al vaso, O gasto de salida del vaso, $\frac{dV}{dt}$ = variación del volumen almacenado en el tiempo.

O bien en diferencias finitas:

$$\frac{I_{i+}I_{i+1}}{2} - \frac{O_i + O_{i+1}}{2} = \frac{V_{i-1} - V_i}{\Delta t}$$

Donde los subíndices i e i + 1 denotan valores al inicio y al final del intervalo de tránsito Δt , respectivamente.

El valor Δt que se usa en el tránsito de avenidas, debido a la duración de las mismas, es considerablemente más pequeño que el empleado en la simulación del funcionamiento de vasos: en el primer caso, Δt es del orden de horas, mientras que en el segundo, Δt es en general de un mes. Por esto, durante el tránsito de una avenida, términos como la lluvia directa en el vaso, la evaporación y la infiltración son insignificantes y normalmente se ignoran. En términos globales es recomendable que el Δt que se use sea menor o igual a una décima parte del tiempo de pico del hidrograma de entrada $\Delta t \leq 0.1tp$. (Aparicio, F.J. 1992),

2.1.3.- Avenida de diseño y capacidad del vertedor

Se llama avenida de diseño a la avenida que corresponde al Tr de diseño y es aquella que entra a un vaso de almacenamiento y cuyo tránsito por el mismo produce escurrimientos que determinan una combinación de la capacidad de regulación de la presa y la capacidad necesaria del vertedor, a mayor capacidad de regulación, menor gasto de diseño del vertedor de excedencias, aplica también el caso contrario, a mayor gasto de diseño del vertedor, menor capacidad de regulación, todo esto con la misma avenida de diseño. Otra definición necesaria es la avenida máxima probable, que es aquella que puede esperarse de la combinación de las condiciones meteorológicas críticas para la cuenca en estudio. La selección de la avenida de diseño depende básicamente del riesgo que se desee asociar a la construcción de la obra. (Arreguín C. F. I. 2000)

Los métodos para calcular la avenida de diseño se pueden clasificar en tres grandes grupos: (Arreguín C. F. I. 2000) empíricos, estadísticos e hidrometeorológicos. Los primeros se basan en calibraciones de característica físicas de la cuenca, como el área o la pendiente media, para su empleo en cuencas similares.

Los criterios estadísticos ajustan una distribución estadística conocida como la Gumbel, la log normal, o la Pearson tipo III, Aparicio J., 1996, a un registro de datos de una estación hidrométrica determinada. Finalmente los criterios hidrometeorológicos utilizan la precipitación máxima probable (PMP), así con la tormenta de diseño, se genera un hidrograma unitario o

mediante el auxilio de la relación lluvia-escurrimiento y al descontar las pérdidas se obtiene la avenida de diseño.

Como se señaló anteriormente la selección de la avenida de diseño está asociada con el riesgo, el cual se relaciona a su vez con los factores como la capacidad y la altura de la presa, así como los requerimientos de evacuación de personas y daños potenciales aguas abajo de la obra, (Marengo H. 2000.)

En resumen, puede decirse que la selección de la avenida de diseño tiene implicaciones técnicas, económicas y sociales.

Por ejemplo si se incrementa la magnitud de la avenida de diseño, disminuye la probabilidad de ocurrencia y por lo tanto el riesgo, pero por otro lado la capacidad del vertedor aumentará y el costo del mismo también.

Cabe hacer notar que estos análisis deben considerar el estado futuro de las condiciones aguas abajo de la presa, sobre todo para efectos de riesgo. Para determinar la capacidad óptima del vertedor, se transita la avenida de diseño por el vaso suponiendo esté lleno hasta la capacidad útil. Debido a que parte del volumen de la avenida transitada será almacenado temporalmente en el vaso entre el nivel de aguas máximas de operación, NAMO y el nivel de aguas máximas extraordinarias NAME (a esta capacidad parcial del vaso se le llama supe almacenamiento o capacidad de regulación Cr).

La capacidad del vertedor podrá ser menor que el gasto máximo de la avenida que entra al vaso seleccionándose finalmente a la mejor combinación capacidad de retenidas y capacidad de la obra de excedencias, que puede traducirse a seleccionar la mejor combinación de la capacidad del vertedor-altura de la cortina.

2.1.4.- Método de Mayoración (M)

Este método es uno de los más populares y de mayor arraigo en México, debido a la rapidez y facilidad en su aplicación (Domínguez et al., 1980). A partir del análisis de los gastos medios diarios se determina la máxima avenida registrada, la cual se puede considerar como la más adversa.

El criterio para seleccionar dicha avenida puede tomar en cuenta el valor registrado más grande de Qp, Vt o una combinación de ambos. Una vez seleccionada, se deberá obtener un hidrograma adimensional, donde cada ordenada será No/Qp para 0=1 hasta la duración d (horas o días). Con el objetivo de estimar los eventos de diseño para diferentes periodos de retorno (QT), se deberá realizar un análisis de frecuencias a los gastos máximos anuales y, mediante un criterio de bondad de ajuste, seleccionar aquella distribución de probabilidad que mejor describa el comportamiento de la muestra analizada. Finalmente, para obtener la avenida de diseño solo se requiere multiplicar las ordenadas Qo/Qp del hidrograma adimensional por el valor estimado de QT, obteniendo así una avenida con las mismas

características de la más adversa registrada, solo que más grande (mayorada). Una desventaja de este método es que en algunas ocasiones la avenida propuesta como más adversa es superada al año siguiente, por lo que se presentan dudas sobre los pronósticos realizados. (Rivera T. Fabián y Escalante S. Carlos, marzo 1999 p. 49)

2.1.5.- Tránsito inverso en vasos.

Para encontrar la avenida de diseño de una presa, es común hacer un estudio estadístico de los eventos ocurridos en la sección de interés en el río, generalmente dichos eventos son medidos con una estación hidrométrica previamente instalada en el lugar donde se construiría posteriormente la cortina de la presa o en un lugar cercano al sitio. Después de la construcción de la cortina, el registro de los eventos ocurridos se realiza mediante la técnica del tránsito inverso o antitránsito de avenidas (Aldama, Álvaro A y Aguilar, E. 1997) donde es posible utilizar al vaso de la presa como un dispositivo de aforo

Es importante mencionar que en los eventos registrados, el estudio estadístico se hace a considerando los escurrimientos máximos anuales, muchos de ellos realmente son estimados, ya que cuando ocurren esas grandes avenidas en los ríos, los aforadores por seguridad no miden el gasto máximo, solamente lo estiman de acuerdo con las elevaciones registradas y un método indirecto que permite la estimación del caudal máximo

Por otro lado, una vez construida la presa, la estimación de los caudales de entrada al vaso de la presa utilizan la técnica tradicional para el cálculo del tránsito inverso, también conocido como antitránsito de avenidas en vasos. El resultado de esa técnica tradicional exhibe oscilaciones alrededor de la solución, las cuales son producto de una inestabilidad del método numérico utilizado. Esa inestabilidad históricamente ha impedido que se acepten plenamente los valores obtenidos de las avenidas de ingreso calculadas con tránsitos inversos. Es frecuente que alrededor del cálculo tradicional, se efectúen algunas correcciones con las que se pretende evitar esas oscilaciones y consecuentemente de acuerdo con el técnico encargado de hacer cada corrección, se obtiene un dato que no necesariamente es el mismo que obtienen otros especialistas que realizan el mismo cálculo

Con la aplicación del antitránsito o tránsito inverso, los hidrogramas de ingreso al vaso de la presa se calculan con los registros de operación de la presa correspondientes a la elevación de la superficie libre del agua en el vaso, del empleo de las relaciones elevaciones-capacidades y elevaciones-descargas y el registro de operación de las obras de toma y de excedencias.

Los antitránsitos se llevan a cabo resolviendo numéricamente la ecuación de continuidad en forma inversa, calculando el gasto de ingreso al vaso a partir del gasto de egreso y de la tasa de cambio del almacenamiento (Aldama y Aguilar, 1996).

Los hidrogramas de ingreso que se obtienen al aplicar el esquema de la regla trapezoidal, exhiben oscilaciones considerables que hacen dudar de la confiabilidad del método tradicional.

Como se describe en (Aldama y Aguilar, 1996 y 1997) La ecuación de continuidad para cálculo del tránsito de avenidas en un vaso se expresa como:

$$\frac{dS}{dt} = I - O \tag{1}$$

en donde S representa el almacenamiento en el vaso; l, el gasto de ingreso; O, el gasto de egreso; y t, el tiempo.

Generalmente la ecuación (1) se resuelve en forma directa, sujeta a una condición inicial, acoplada con la relación elevaciones-capacidades y la relación elevaciones-descargas:

La determinación de un hidrograma de ingreso a una presa, l = l(t), contrasta con la situación descrita en el párrafo anterior. En este caso se conoce la evolución de la superficie libre del agua en el tiempo y los gastos de salida del vaso, así como la relación elevaciones-capacidades que permite determinar la evolución en el tiempo de los almacenamientos. Entonces, (1) puede resolverse para el gasto de ingreso, resultando en:

$$I(t) = S'(t) + O(t)$$
 (2)

donde S'(t) = dSldt. La expresión (2) es conocida como tránsito inverso o antitránsito. Pudiera parecer trivial resolver numéricamente (2) y así calcular una sucesión de valores discretos de los gastos de ingreso al vaso.

El método tradicional para llevar a cabo tránsitos inversos en vasos para la estimación de hidrogramas de ingreso se obtiene mediante el esquema de discretización de Crack-Nicolson o regla trapezoidal (Gear, 1971):

$$\frac{I_{j+1}+I_j}{2} = \frac{S_{j+1}-S_j}{\Delta t} + \frac{O_{j+1}+O_j}{2}$$
 (3)

donde I, representa una aproximación discreta a $I(j\Delta t)$; O_i , una aproximación discreta a $O(j\Delta t)$; S_i una aproximación discreta a $S(j\Delta t)$; j=0,1,2,...; y Δt un intervalo de tiempo. Resolviendo (3) para I_{j+1} , se obtiene:

$$I_{j+1} = -I_j + O_{j+1} + O_j + 2\frac{S_{j+1} - S_j}{At}$$
(4)

Que es la expresión discreta que se utiliza para llevar a cabo el tránsito inverso mediante el método tradicional.

2.2.- Uso del análisis de frecuencias en hidrología

Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

En el ámbito de la hidrología numerosos fenómenos extremos no pueden pronosticarse con base en información determinística, con la suficiente dureza y tiempo de antelación, para poder tomar las decisiones pertinentes a su ocurrencia. En dichos casos, se requiere un enfoque probabilístico con el fin de incorporar los efectos de esos fenómenos en las decisiones. Si se puede suponer que las ocurrencias son temporalmente independientes, esto es, el tiempo y la magnitud de un evento no tiene relación con los eventos anteriores, entonces se puede usar el análisis de frecuencias para describir la probabilidad de cualquier evento o de una combinación de ellos, durante el intervalo de tiempo necesario para una decisión. Los fenómenos hidrológicos que se describen en general mediante el análisis de frecuencias son las precipitaciones y las crecidas anuales máximas que son los que tienen una naturaleza aleatoria.

El análisis de frecuencias puede ser grafico o matemático, en el enfoque gráfico, las observaciones históricas de la variable de interés se ordenan en orden ascendente o descendente, y se traza un gráfico de las magnitudes de los eventos en función de su frecuencia de excedencia o intervalo de repetición. Después se ajusta a una curva a través de los puntos representados gráficamente para describir la probabilidad de ocurrencia futura de cualquier evento. Se dispone de un papel especial para gráficos, que puede usarse para ilustrar la curva suave como una línea recta.

El enfoque matemático para el análisis de frecuencias se basa en la suposición de una descripción matemática específica, conocida como distribución de probabilidades, para definir el equivalente de la curva del enfoque gráfico. Los parámetros de la distribución de probabilidades se definen como funciones de las estadísticas de las observaciones hidrológicas.

2.2.1.- Período de retorno

El período de retorno Tr, de un evento dado es el número promedio y a la larga de años dentro del cual se espera que el evento sea igualado o excedido. El evento que se espera ser igualado o excedido cada N años, es el evento de N años, XT. Ambos términos de refieren a la frecuencia de ocurrencia promedio esperada de un evento durante un largo período de años. El período de retorno es igual al inverso de la probabilidad de excedencia en un solo año. (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994). En la construcción de presas de almacenamiento es muy importante tomar en cuenta el período de retorno ya que en el diseño de la capacidad de la presa debe considerar la magnitud de la avenida asociada al período de retorno de 10, 000 años; es decir, la capacidad de la presa entre el NAMO y NAME debe ser suficiente para contener y regular el volumen de ingreso producto de la avenida de diseño.

2.3.- Análisis de lluvia de una tormenta

El objetivo del análisis de la lluvia de una tormenta es obtener las características (altura o cantidad, superficie afectada y duración de la lluvia) de una tormenta particular. La altura se determina a partir de las combinaciones pertinentes de la superficie y la duración, y usualmente se representa con tablas o curvas. En conjunto, dichos análisis constituyen registros útiles para el diseño de vertedores y para la investigación de predicciones cuantitativas de precipitación (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

Las observaciones de lluvia puntual se analizan conjuntamente y junto con otra información. Los datos de lluvia en general consisten en observaciones totales diarias, intercaladas con unas cuantas mediciones que contienen información de la intensidad de la lluvia a corto plazo. Algunas veces se aumentan estos datos con las observaciones recabadas a través de informes especiales, denominados estudios mediante el análisis de recipientes. Se puede obtener información adicional de mapas meteorológicos sinópticos, radares, informes de crecidas en pequeñas corrientes y de otras fuentes.

Este tipo de análisis es necesario en cuencas donde no se tiene registros hidrométricos confiables y series lo suficientemente largas que puedan ser utilizados en lugar del uso de modelos lluvia-escurrimiento.

2.3.1.- Precipitación media de una cuenca

Aunque existen varios métodos para determinar la interpretación de los datos de precipitación cómo el método de Isoyetas, Inverso de la distancia al cuadrado, la media aritmética, el de los polígonos de Thiessen, etc., se ha seleccionado esté ultimo para realizar la interpretación de los datos de precipitación para integrarlos al modelo Lluvia-Escurrimiento para la presa La Boca; este método se usa cuando las estaciones no están espaciadas uniformemente (que es el caso de la cuenca de la presa de La Boca). Consiste en ponderar los datos de las estaciones teniendo en cuenta la distancia que existe entre ellas. En este procedimiento se trazan en un mapa las líneas que unen las estaciones cercanas. Los bisectores perpendiculares de estas líneas forman un dibujo de polígonos alrededor de cada estación. La superficie de cada estación representa la superficie del polígono que la rodea y esta superficie se usa como un factor de ponderación de la precipitación de esa estación.

La suma de los productos de la superficie correspondiente a cada estación y la precipitación se divide entre la superficie total de la cuenca para obtener la lluvia promedio. Alrededor del borde de la cuenca, donde partes de los polígonos se extienden más allá de los límites de la cuenca, se usa solo la porción del polígono que esté dentro de la cuenca de drenaje. De esta manera las estaciones que están cerca pero fuera de la cuenca de drenaje pueden tener polígonos que extienden hasta la cuenca de drenaje y se incluyen sus datos. (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

2.4.- Relación Iluvia-escurrimiento

Las relaciones lluvia-escurrimiento se utilizan principalmente para el diseño, los pronósticos y la evaluación. Si los datos de escurrimiento no están disponibles o son insuficientes para una interpretación o extrapolación fiables, las relaciones-lluvia-escurrimiento pueden ser muy útiles porque permiten extraer la información de escurrimientos a partir de los registros de precipitación. Como los datos de lluvia son relativamente fáciles y poco costosos de recoger, son generalmente más abundantes que los datos de escurrimiento. Si se puede establecer una relación estrecha entre lluvia y escurrimiento para una cuenca determinada, la relación lluvia-escurrimiento, aplicada a los datos de lluvia, puede dar estimaciones más fiables de la frecuencia de grandes caudales que los que puede dar una relación regional entre las crecidas o una extrapolación basada en los datos de escurrimientos de la cuenca.

Las relaciones lluvia-escurrimiento usualmente se establecen en dos etapas: la determinación del volumen de escurrimiento que resulta de un volumen de lluvia producido durante un período de tiempo dado, y la distribución del volumen de escurrimiento en función del tiempo. La primera etapa es necesaria debido a la división de la lluvia en evapotranspiración, infiltración y escurrimiento. La segunda se requiere para tomar en cuenta el tiempo de recorrido y atenuación de la onda de escurrimiento que se genera por lluvia. (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

2.5. Diseño y revisión hidrológicos de presas.

México posee una gran diversidad de climas: desértico, semidesértico, tropical, subtropical y frío. Los fenómenos hidrometeorológicos que producen grandes precipitaciones resultan de especial relevancia por el poder destructivo que poseen las crecientes e inundaciones que generan, mismas que afectan a centros urbanos, agrícolas e industriales. Tal es el caso de los ciclones y las tormentas tropicales, además de las corrientes en chorro y los sistemas de invierno, como vaguadas polares y frentes fríos. Las avenidas extremas generadas por dichos fenómenos ponen en riesgo a las presas, cuya eventual falla podría producir verdaderas catástrofes. (Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F., 2005).

Los vertedores de excedencias constituyen elementos clave para garantizar la seguridad hidrológica de una presa, ya que permiten desalojar los volúmenes de agua que no pueden ser manejados por el embalse. Cada presa tiene una capacidad de regulación de avenidas que ingresan a sus vasos, lo cual permite que los gastos o caudales que son desalojados por la obra de excedencias sean menores a los que ingresan. El gasto máximo que sale por el vertedor de excedencias se determina simulando el paso de la creciente de diseño por el embalse de la presa, mediante el proceso denominado tránsito de avenidas por el vaso de almacenamiento. Dicho valor del gasto permite definir la capacidad máxima que deben tener los vertedores lo que a su vez define su diseño hidráulico. (Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F., 2005).

La revisión hidrológica de una presa se realiza comparando los valores originales de la avenida de diseño, la capacidad de la obra de excedencias y la capacidad de control del vaso de la presa, con los valores obtenidos utilizando la información disponible más reciente y abundante aplicando métodos de análisis más modernos. Resulta obvio que la presa será hidrológicamente segura si al paso de la avenida de diseño el nivel máximo de la superficie libre del agua no rebasa el NAME. Cuando este nivel sea sobrepasado, se considera que la presa se encuentra en estado de riesgo hidrológico. (Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F., 2005).

Capítulo 3

REVISIÓN HIDROLÓGICA DE LA PRESA LA BOCA

3.1.- Elaboración del modelo-lluvia escurrimiento para la presa La Boca

De acuerdo con el tipo de cuenca de la presa La Boca en la que sus aportaciones al vaso están distribuidas en diferentes arroyos de poca longitud, no existen estaciones hidrométricas, de tal forma que no se cuenta con la información de gastos medidos como entrada al vaso, por esta razón es necesario la elaboración de un modelo de lluvia-escurrimiento con el fin de determinar la avenida de diseño hacer el tránsito en el vaso y de esta manera hacer la revisión hidrológica de esta presa.

La revisión hidrológica de una presa se realiza comparando los valores originales de la avenida de diseño, la capacidad de la obra de excedencias y la capacidad de control del vaso de la presa, con los valores obtenidos utilizando la información disponible más reciente y abundante y aplicando métodos de análisis modernos. La presa de la Boca será hidrológicamente más segura si al paso de la avenida de diseño el nivel máximo de la superficie libre del agua no rebasa el NAME.

Para elaborar el modelo lluvia escurrimiento, se seleccionaron las estaciones climatológicas que tienen influencia en la cuenca de la presa La boca, las estaciones seleccionadas son la ubicada en la cortina de la presa La Boca clave clicom 19069, El Cerrito clave clicom 19015 y Laguna de Sánchez clave clicom 19033, las estaciones La Boca y Laguna de Sanchez se localizan en el municipio de Santiago, N. L. y El Cerrito en el municipio de Monterrey, N. L., de estas estaciones se revisó la información correspondiente a las lluvias máximas en 24 horas. Tablas 5, 6 y 7.

Estación	Clave	ubic	ubicación período de registro		Precipitación	
		Lat. Norte	Long. Oeste	inicio	fin	máxima registrada mm
La Boca	19069	25° 25' 46"	100° 07' 44"	1947	2007	332.2
El Cerrito	19015	25° 31' 07"	100° 11' 56"	1958	2007	330.5
Laguna de Sánchez	19033	25° 20' 44"	100° 16' 56"	1960	2007	345.0

ORGANISMO DE CUENCA RÍO BRAVO DIRECCIÓN TÉCNICA LLUVIA MÁXIMA EN 24 HORAS EN mm

ESTACIÓN: EL CERRITO MUNICIPIO: SANTIAGO MÁX. AÑO ENE FEB MAR ABR JUN ANUAL MAY JUL AGO SEP OCT NOV DIC 1958 5.0 4.0 3.0 4.5 83.0 60.5 87.0 65.0 200.0 155.0 21.0 6.0 200.0 1959 16.0 2.0 10.0 21.0 25.0 53.0 53.0 4.0 22.0 52.0 35.0 3.0 1960 20.0 28.0 28.0 2.0 18.5 6.0 28.0 1961 1962 13.0 1.0 8.0 5.0 12.0 72.5 2.0 33.0 119.0 15.5 27.5 119.0 27.0 35.0 65.0 190.0 108.0 10.0 190.0 1963 5.0 45.0 41.0 29.0 1.0 7.0 27.0 35.5 22.0 1964 13.0 30.0 38.5 36.0 68.0 80.5 6.0 80.5 1965 7.0 21.0 16.0 33.0 26.0 38.5 36.0 35.5 110.0 110.0 25.0 21.0 110.0 1966 13.5 25.0 194.0 53.0 28.0 59.0 63.8 194.0 63.0 54.0 24.5 1967 10.0 12.0 20.0 31.0 18.0 35.0 38.0 108.0 11.0 108.0 17.0 25.0 1968 18.0 8.0 4.0 5.0 35.0 35.0 80.5 64.0 38.0 1.0 80.5 1969 2.0 2.0 1.5 2.0 23.5 30.0 1.5 61.0 25.0 12.0 61.0 1970 320.0 3.0 40.0 0.5 61.0 63.0 69.0 20.0 2.0 320.0 1971 1.5 11.0 35.0 25.0 0.5 12.0 35.0 19.0 75.0 1972 1.0 2.0 8.0 56.0 65.0 42.0 22.0 8.5 4.0 1.0 75.0 1973 21.0 11.0 1.5 1.5 25.0 246.0 50.0 54.0 45.0 15.0 2.0 0.5 246.0 1974 10.0 0.5 32.0 2.0 52.0 65.0 7.5 18.0 128.0 23.0 2.0 2.0 128.0 1975 0.5 32.0 29.5 59.5 132.0 27.5 0.5 0.5 132.0 5.0 64.5 40.0 1976 6.0 0.5 2.0 52.0 15.0 42.0 175.0 49.0 58.0 3.0 18.0 4.0 175.0 187.0 1977 3.0 15.5 5.0 14.0 0.5 95.0 187.0 1.5 1978 12.0 8.0 8.0 13.5 63.0 75.0 10.0 112.0 103.0 65.0 9.5 6.0 112.0 1979 18.0 89.0 23.0 2.0 2.5 18.5 16.0 10.6 45.0 4.0 89.0 1980 3.0 4.0 1.0 10.5 38.5 6.0 90.0 114.0 62.0 12.0 3.5 114.0 1981 4.0 19.5 69.0 0.5 30.0 40.6 82.0 6.5 32.0 82.0 1982 0.6 26.5 8.5 17.5 18.0 1.0 3.0 26.5 1983 22.0 108.5 10.5 52.0 116.0 40.5 3.5 13.2 53.0 4.5 116.0 1984 25.5 1.5 0.5 99.5 32.5 43.5 45.5 39.5 2.5 20.0 15.5 99.5 1985 15.0 5.5 8.0 26.0 95.0 45.0 9.5 26.5 31.0 58.0 2.5 1.5 95.0 1986 0.0 1.0 20.0 15.0 101.0 1.0 81.0 228.0 12.5 20.0 228.0 64.5 42.5 1987 10.0 15.0 5.5 29.0 18.5 30.8 S.R. 41.0 40.0 50.0 3.2 15.0 50.0 1988 27.5 1.5 9.5 46.8 33.5 38.0 330.5 22.0 4.0 3.5 330.5 2.0 16.5 1989 2.0 92.5 41.5 2.0 1.5 31.0 2.0 7.5 65.5 68.5 8.5 15.5 92.5 1990 3.5 20.0 24.0 12.5 7.5 39.5 53.0 82.5 75.5 7.5 1.0 82.5 1991 6.5 24.0 15.5 36.5 76.5 14.0 20.0 84.0 15.0 12.5 42.0 84.0 1992 18.0 8.5 9.0 42.5 20.5 1.5 11.0 59.5 21.5 47.0 15.5 7.5 59.5 108.0 95.0 7.0 108.0 1993 2.0 12.5 11.5 20.5 40.5 2.0 74.5 20.0 9.5 10.5 1994 7.5 25.5 1.6 25.5 51.2 47.5 46.5 91.0 21.0 14.0 91.0 1995 4.0 10.0 15.5 3.0 30.5 23.0 48.0 143.0 18.5 7.5 6.5 8.5 143.0 1996 6.5 3.5 0.0 3.0 19.0 74.0 18.5 74.0 97.0 135.0 10.5 1.0 135.0 1997 3.0 6.0 22.0 26.5 29.0 11.5 1.0 15.0 26.0 79.8 28.0 4.0 79.8 192.0 1998 0.0 7.0 83.0 29.5 77.5 192.0 36.0 18.0 3.0 8.5 4.5 0.5 1999 0.0 3.5 8.0 32.0 0.5 3.5 0.0 46.0 67.0 67.0 2000 1.5 9.5 6.5 11.0 56.0 59.0 10.0 54.0 8.0 170.0 10.5 5.0 170.0 2001 6.0 8.0 6.5 10.0 12.0 42.0 63.0 26.0 118.0 72.5 11.0 1.0 118.0 90.0 41.0 51.0 114.0 0.5 114.0 2002 0.5 3.0 8.0 45.0 3.5 5.5 11.0 2003 7.5 20.0 sd 2004 sd 330.0 11.0 48.4 330.0 2005 sd sd sd sd sd sd 33.0 4.5 4.4 2006 31.7 13.7 64.9 65.0 43.0 23.0 7.6 8.0 8.0 2.8 7.8 3.0 65.0 39.0 7.9 4.2 14.0 8.0 18.5 53.0 45.0 8.5 15.5 0.0 2007 58.0 58.0

Tabla 5.- Lluvias máximas en 24 horas en la estación climatológica El Cerrito

ORGANISMO DE CUENCA RÍO BRAVO DIRECCIÓN TÉCNICA LLUVIA MÁXIMA EN 24 HORAS EN mm

ESTACIÓN: LA BOCA MUNICIPIO: SANTIAGO AÑO ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC MÁX. ANUAL 1947 10.3 8.0 54.0 56.5 133.5 27.5 26.5 13.5 14.5 133.5 1948 2.0 1.0 25.0 9.0 29.0 12.5 46.5 52.0 49.0 120.5 0.0 2.1 120.5 1949 3.0 29.0 3.5 42.0 12.0 52.0 34.5 48.0 68.0 15.0 INAP 42.0 68.0 1950 3.5 7.0 15.0 14.0 5.0 41.0 76.5 20.0 55.0 36.0 2.0 0.0 76.5 3.0 39.0 103.0 3.0 8.0 116.0 1951 1.5 11.5 19.5 116.0 55.0 64.0 1952 40 8.0 24.0 30.0 29.5 86.0 19.0 74 45.0 2.0 5.0 INAP 86.0 1953 0.0 5.0 20.0 4.5 2.0 14.0 5.5 52.0 52.0 143.0 3.5 11.0 143.0 1954 32.0 0.0 7.0 13.0 13.5 14.0 20.0 25.0 180.0 52.0 0.0 180.0 32.0 1955 8.0 3.5 4.0 25.0 90.0 35.0 33.5 25.8 90.0 10.0 14.0 14.0 8.1 1956 2.7 14.2 1.8 26.8 76.0 12.8 12.0 39.5 1.4 108.0 68.0 11.0 108.0 1957 5.0 65.3 2.3 21.5 98.5 27.3 2.2 52.5 28.0 109.0 5.5 109.0 12.0 19.0 2.5 25.0 92.3 86.0 196.0 3.9 18.5 1958 16.1 60.2 156.5 196.0 1959 5.7 53.0 2.5 14.3 34.2 29.9 35.0 55.1 170.5 65.0 1.0 0.5 170.5 1960 1.0 38.0 41.5 71.0 71.0 22.5 16.0 16.5 1.3 48.3 24.0 63.5 13.5 1961 4.8 27.0 21.0 7.0 38.2 65.0 110.0 40.0 82.0 7.5 1.5 110.0 3.0 1962 9.0 7.1 31.0 126.0 30.0 15.0 126.0 1.5 7.1 80.0 1.0 10.2 1963 4.5 1.5 41.0 33.0 25.0 36.5 50.0 200.5 119.5 15.0 14.0 8.5 200.5 37.0 1964 0.5 14.0 19.5 38.5 38.0 38.0 34.0 67.5 82.3 23.0 82.3 1965 4.5 12.0 15.5 52.0 30.0 55.2 INAP 44.8 106.0 108.5 25.0 22.0 108.5 1966 12.4 59.5 25.7 38.3 41.8 104.0 91.3 266.0 47.0 37.8 98.5 INAP 266.0 1967 20.3 17.1 20.0 43.7 28.0 25.3 50.5 96.7 332.2 24.1 10.1 0.9 332.2 1968 7.0 4.3 31.1 20.0 23.4 52.7 87.5 71.8 67.6 44.0 8.7 0.0 87.5 3.8 37.0 33.0 21.8 30.3 59.8 1969 4.3 3.5 8.6 41.6 59.8 29.3 33.5 1970 5.7 36.0 2.2 32.5 7.0 25.8 94.0 22.5 108.5 60.3 0.5 108.5 1971 51.0 3.0 2.0 18.0 63.5 37.6 26.7 71.0 131.5 53.2 6.3 131.5 1972 5.5 24.0 8.5 31.3 42.8 73.5 86.7 44.5 94.0 3.9 2.0 94.0 6.6 1973 12.7 24.0 2.3 15.0 13.3 226.0 85.2 0.98 80.3 46.1 30.0 9.2 226.0 1974 14.5 0.0 45.6 4.4 95.0 69.0 33.0 13.5 231.5 18.5 2.5 1.7 231.5 1975 4.0 11.0 7.5 14.5 7.3 128.0 73.4 108.7 15.5 2.7 24.3 128.0 6.5 27.5 1976 3.1 15.3 27.2 19.8 0.3 30.4 123.0 60.0 102.5 54.5 123.0 4.5 1977 6.3 13.4 7.0 28.0 31.0 17.0 10.9 54.8 106.2 148.0 4.7 0.9 148.0 1978 7.1 17.0 222.5 4.0 222.5 8.2 3.0 23.3 68.7 80.0 144.7 73.8 5.3 1979 2.1 2.3 24.0 17.8 21.3 89.5 66.1 29.8 77.8 5.6 38.5 89.5 94.2 23.9 51.9 6.7 94.2 1980 4.4 2.4 2.5 21.3 26.1 33.5 87.5 18.6 1981 21.0 8.1 8.1 75.0 47.0 101.0 17.5 45.2 82.5 8.2 0.8 0.4 101.0 1982 0.0 9.7 20.5 32.5 3.1 11.0 79.0 140.9 5.0 29.5 140.9 8.0 5.3 3.6 117.9 2.1 117.9 17.5 0.0 76.0 51.2 55.5 1.8 1983 14.1 32.3 46.0 1984 51.2 4.0 0.0 7.5 78.0 37.5 54.1 33.2 72.2 4.0 28.0 9.5 78.0 41.7 1.7 59.7 1985 13.5 5.4 11.5 52.0 25.0 1.8 14.0 59.5 1.2 1986 0.0 1.2 1.8 12.2 61.0 52.0 5.3 37.8 148.9 48.0 18.2 18.5 148.9 1987 12.9 23.1 16.8 27.5 23.3 42.2 49.6 47.8 40.0 53.9 2.2 1.2 53.9 1988 2.0 13.1 14.2 38.7 49.4 45.9 327.0 0.2 3.1 327.0 34.2 5.7 6.0 6.1 91.0 1989 3.0 1.4 6.7 1.9 24.5 39.0 24.1 70.1 4.8 21.8 91.0 34.1 32.3 110.9 1990 5.5 5.9 23.8 45.6 20.0 35.6 110.9 81.1 6.3 2.1 1991 3.8 9.4 11.7 17.6 34.3 96.5 6.1 10.4 72.0 12.5 6.7 42.5 96.5 1992 7.0 55.7 20.0 72.0 37.0 13.0 SD 72.0 20.4 6.2 4.0 4.5 40.0 1993 4.5 13.0 10.0 20.0 37.2 71.2 10.7 90.2 182.2 15.7 9.7 13.0 182.2 79.2 29.5 75.0 20.8 21.3 9.1 79.2 1994 9.0 21.1 1.7 20.0 43.0 1995 87.0 92.0 53.4 167.5 25.0 6.5 18.7 167.5 1996 6.5 2.2 3.5 3.0 29.5 13.0 96.0 57.3 120.5 3.0 0.5 120.5 1997 6.8 34.9 30.7 42.3 19.0 11.2 48.4 52.6 139.0 23.7 4.8 139.0 4.5 1998 0.0 5.0 8.2 4.7 0.9 50.0 48.4 26.0 160.0 87.4 31.3 3.1 160.0 1999 0.0 22.0 22.5 95.4 36.1 58.7 21.9 95.4 0.0 6.5 68.3 0.4 14.9 2000 1.0 12.2 6.0 51.0 68.0 80.0 5.5 68.8 72.3 191.7 14.8 6.7 191.7 19.3 131.5 105.0 131.5 2001 6.0 20.0 8.6 23.0 31.0 86.4 61.0 31.9 2002 1.5 2.3 3.5 7.9 1.5 23.7 33.3 30.6 233.9 69.0 8.0 0.4 233.9 2003 97.0 15.9 2.3 18.9 61.5 54.5 24.8 88.2 90.0 66.2 17.8 1.2 97.0 31.5 29.6 59.4 2.0 96.0 2004 2.0 9.8 63.0 47.5 20.7 48.6 96.0 18.8 2005 3.0 9.8 63.0 47.5 20.7 31.5 29.6 48.6 3.0 59.4 18.8 2.0 63.0 0.0 7.5 5.8 6.4 13.5 98.5 sd 7.5 sd 88.4 35.7 98.5 2007 10.5 5.0 3.8 13.8 51.5 44.4 27.7 40.0 72.5 0.5 72.5 15.6 24.0

Tabla 6.- Lluvias máximas en 24 horas en la estación climatológica La Boca

ORGANISMO DE CUENCA RÍO BRAVO DIRECCIÓN TÉCNICA LLUVIA MÁXIMA EN 24 HORAS EN mm

ESTACIO	ÓN: LA	GUNA	DE SÁN	ICHEZ					MUNICIP	PIO: SA	NTIAGO		
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	MÁX. ANUAL
1960	4.5	19.5	S/D	8.0	9.0	19.0	21.5	34.5	25.0	15.0	20.0	15.0	34.5
1961	3.0	15.0	3.5	21.5	4.5	31.5	32.0	57.0	67.5	10.0	5.5		67.5
1962				8.5	20.5	45.5		14.0	65.5	10.0	5.5	8.0	65.5
1963			12.5	19.5	19.0	34.5	35.5	37.5	65.0	22.0	13.5	7.5	65.0
1964	12.5	3.0	3.5	14.0	13.5	27.0	23.5	14.0	79.0	16.5	26.5	15.0	79.0
1965	9.5	15.0	4.5	23.5	17.0	29.5	26.0	25.0	30.5	10.0	3.0	17.0	30.5
1966	26.5	24.5	3.5	8.5	25.0	37.5	20.0	23.5	115.0	82.0		6.0	115.0
1967	20.0	15.5	12.0	50.5	5.5	14.5	24.0	49.0	170.0	23.5	4.0	1.0	170.0
1968		6.0	12.5	19.5	11.0	14.0	21.0	10.5	22.5	20.5	9.0	4.0	22.5
1969	3.0	11.0	2.5	16.5	10.5	12.0	34.0	61.5	24.5	12.0	27.0	44.5	61.5
1970	14.5	10.0	1.5	29.0	17.0	55.5	49.0	26.0	128.0				128.0
1971	54.5		3.0	3.5	29.0	25.0	41.5	15.5	47.0	7.0	6.5	6.0	54.5
1972	3.0	9.5	11.0	13.5	14.0	26.0	46.5	10.0	26.5	25.0	9.0		46.5
1973	14.0	19.0	4.0	10.0	10.0	109.0	14.0	38.0	28.0	20.0	1.0		109.0
1974	19.0	1.5	4.5	7.0	33.0	20.0	2.5	42.5	160.0	14.5	5.0	4.0	160.0
1975	2.5	25.0		2.0		39.0	41.0	72.0	96.0	22.0		25.0	96.0
1976	2.0		9.0	14.0	20.0	20.0	66.0	29.0	35.0	22.0	49.0	11.0	66.0
1977	10.0	1.5		12.0	24.0	21.0	7.0	60.0	260.0		14.0		260.0
1978	29.0	10.0		43.5	8.0	24.0	24.0	23.0	300.0	18.0		8.0	300.0
1979	15.0	10.0		6.0		40.0		20.0					40.0
1980	1.0	18.0		5.0	2.5	60.0	27.0	42.0	70.0	27.5	17.5		70.0
1981	2.0	15.0	2.0	20.0	11.0	60.0	6.5	30.2	80.1				80.1
1982													
1983					1 1 1								
1984	60.0	9.0	5.0	0.0	37.0	10.0	14.0	34.0	85.0	10.0	12.0	9.0	85.0
1985	15.0	7.0	6.0	26.0	20.0	27.0	5.0	19.0	30.0	16.0	0.0	3.0	30.0
1986	0.0	0.0	0.0	0.0	11.0	18.0	5.0	28.0	57.0	26.0	20.0	14.0	57.0
1987	29.0	23.0	0.0	37.0	36.0	17.0	20.0	40.0	40.0	20.0	7.0	1.2	40.0
1988	35.0	8.0	10.0	25.0	25.0	9.0	26.0	35.0	345.0	10.0	2.5	0.0	345.0
1989	0.0	0.0	2.0	0.0	5.0	2.0							
1990	0.0	26.0	1.0	20.0	15.0	21.0	75.0	31.0	40.0	47.0	0.0	1.0	75.0
1991	0.0	0.0	3.0	10.0	20.0	35.0	23.0	21.0	40.0	14.0	28.0	12.0	40.0
1992	40.0	8.0	11.0	14.0	20.0	4.0	14.0	20.0	50.0	30.0	35.0	25.0	50.0
1993	5.0	0.0	13.0	7.0	19.0	32.0	14.0	20.0	40.5	20.0	20.0	8.0	40.5
1994	0.0	0.0	8.5	10.0	32.0	18.0	12.0	32.0	28.0	11.0	5.0	15.0	32.0
1995	0.0	3.0	0.0	0.0	15.0	21.0	15.0	48.0	14.0	0.0	0.0	3.0	48.0
1996	0	0	0	10	20.5	24.5	8	98	13	185	2.5	4	185.0
1997	10	8	11	20	10	sd	20.0	20.0	40.0	50.0	45.0	10.0	50.0
1998	0.0												
1999	0.0	0.0	3.0	0.0	0.0	38.0	11.0	48.0	70.0	70.0	2.0	7.5	70.0
2000	7.0	0.0	14.0	3.0	11.0	13.0	18.0		31.0	20.0	2.0	5.0	31.0
2001	5.0	19.5	18.0	12.5	18.5	26.5	28.5	38.0	151.0	25.0	6.0	8.0	151.0
2002	0.2	5.0	2.0	9.5	50.0	32.0	20.0	33.0	145.0	27.5	4.7	2.5	145.0
2003	35.0	35.5	10.6	4.7	20.5	18.6	18.6	28.0	48.0	37.0	4.7	7.4	48.0
2004	20.0	19.4	40.5	21.5	32.1	66.3	44.7	27.3	15.0	07.0	7.,	7.4	66.3
2005	20.0	. 7.4	70.0	21.5	96.0	19.0	286.5	77.0	76.0	41.5	17.0	3.0	286.5
2006	7.0	0.0	65.0	11.5	13.0	15.5	20.8	21.0	52.0	14.3	1.6	17.2	65.0
2007	28.0	1.0	4.7	13.0	93.0	20.0	60.0	23.5	22.4	36.1	9.3	17.2	93.0
2007	20.0	1.0	7./	10.0	70.0	20.0	00.0	20.0	22.4	30.1	7.5		75.0

Tabla 7.- Lluvias máximas en 24 horas en la estación climatológica Laguna de Sánchez

3.1.1.- Análisis de Frecuencias de las Iluvias máximas en 24 horas.

Una vez que se obtuvieron las lluvias máximas en 24 horas se procedió realizar el análisis de frecuencias, análisis que se hizo con el Software AX, el cual fue desarrollado por el Centro Nacional de Prevención de Desastres (CENAPRED, 1997) y es de aplicación generalizada en nuestro país, con este método se determinaron las lluvias asociadas con cada período de retorno obteniendo las valores de acuerdo con la función de distribución de probabilidad que mejor se ajustó para cada estación función que corresponde a la Doble Gumbel.

Resultados del Análisis de frecuencias de las lluvias máximas en 24 horas anuales mediante el uso del Programa AX. Tabla 8.

	Normal		-	Log n	Gumbel			
Estación	Momentos	Máxima verosimilitud	Mom	entos	Máxima verosimilitud		Momentos	Máxima verosimilitud
	2	2	2	3	2 3		2	2
	parámetros	parámetros	parámetros	parámetros	parámetros	parámetros	parámetros	parámetros
El Cerrito	26.912	26.912	15.396	15.821	13.559	13.258	16.428	20.817
La Boca	22.745	22.745	10.401	10.553	13.287	15.339	12.099	16.819
Laguna de								
Sánchez	38.765	38.765	20.213	21.670	25.056	30.540	25.911	34.831

	Expo	nencial		Ga	mma			Mínimo error
Estación	Momentos	Máxima verosimilitud	Mom	entos	Máxima verosimilitud		Doble Gumbel	Estándar
	2	2	2	3	2	3		
	parámetros	parámetros	parámetros	parámetros	parámetros	parámetros		
El Cerrito	14.847	39.722	15.686	14.997	18.099	15.250	12.827	12.827
La Boca	8.720	57.688	13.258	9.617	16.013	9.876	8.501	8.501
Laguna de								
Sánchez	17.422	17.667	20.810	19.294	28.180	11111.000	11.370	11.370

Tabla 8.- Análisis de frecuencias de las lluvias máximas en 24 horas anuales

3.1.2.- Análisis de frecuencias de las lluvias máximas en 24 horas en la estación climatológica El Cerrito.

Una vez obtenida la función de distribución de probabilidad que mejor se ajustó se procedió a la determinación de los períodos de retorno de las precipitaciones máximas en 24 horas, los resultados se muestran en la Tabla 9. Figura 21.

Períodos de retorno ajustados a la FDP Doble Gumbel

		orno ajustados		
No de orden	Tr	Observado	Calculado	Error cuadrático
1	48.00	330.5	327.2	10.9
2	24.00	330.0	291.1	1513.6
3	16.00	320.0	268.7	2636.9
4	12.00	246.0	251.6	31.5
5	9.60	228.0	237.3	87.3
6	8.00	200.0	224.6	606.0
7	6.86	194.0	212.7	350.6
8	6.00	192.0	201.2	84.6
9	5.33	190.0	189.7	0.1
10	4.80	187.0	178.2	77.8
11	4.36	175.0	166.9	65.2
12	4.00	170.0	156.6	178.8
13	3.69	143.0	147.8	22.8
14	3.43	135.0	140.3	28.4
15	3.20	132.0	134.1	4.2
16	3.00	128.0	128.7	0.4
17	2.82	119.0	123.9	24.3
18	2.67	118.0	119.7	3.0
19	2.53	116.0	115.9	0.0
20	2.40	114.0	112.4	2.5
21	2.29	114.0	109.2	23.2
22	2.18	112.0	106.2	34.0
23	2.09	110.0	103.3	44.6
24	2.00	108.0	100.6	54.3
25	1.92	108.0	98.1	98.9
26	1.85	99.5	95.6	15.3
27	1.78	95.0	93.2	3.2
28	1.71	92.5	90.9	2.6
29	1.66	91.0	88.7	5.5
30	1.60	89.0	86.5	6.5
31	1.55	84.0	84.3	0.1
32	1.50	82.5	82.2	0.1
33	1.45	82.0	80.1	3.8
34	1.41	80.5	78.0	6.5
35	1.37	80.5	75.9	21.6
36	1.33	79.8	73.7	36.7
37	1.30	75.0	71.6	
38	1.26	67.0	69.4	11.6 5.9
39	1.23	65.0	67.2	4.8
40	1.20	61.0	64.9	15.0
41	1.17	59.5	62.4	8.7
42		58.0	59.9	3.5
	1.14		1/2/3/201	
43	1.12	53.0	57.1	16.7
44	1.09	50.0	54.0	16.1
45	1.07	35.0	50.5	238.9
46	1.04	28.0	46.1	326.8
47	1.02	26.5	39.8	177.5

Tabla 9.- Períodos de retorno asociados a los datos observados de

Figura 21.- Períodos de retorno asociados a los datos observados de la estación climatológica El Cerrito.

3.1.3.- Análisis de frecuencias de las Iluvias máximas en 24 horas en la estación climatológica La Boca.

Una vez obtenida la función de distribución de probabilidad que mejor se ajustó se procedió a la determinación de las precipitaciones máximas en 24 horas para diferentes períodos de retorno, los resultados se muestran en la Tabla 10. Figura 22.

Períodos de retorno ajustados a la FDP Doble Gumbel

			los a la FDP Doble	
No de orden	Tr	Observado	Calculado	Error Cuadrático
1	62.00	332.20	309.22	528.02
2	31.00	327.00	279.58	2248.20
3	20.67	266.00	261.43	20.85
4	15.50	233.90	247.89	195.78
5	12.40	231.50	236.79	27.90
6	10.33	226.00	227.14	1.3
7	8.86	222.50	218.41	16.7
8	7.75	200.50	210.24	94.9
9	6.89	196.00	202.39	40.7
10	6.20	191.70	194.65	8.7
11	5.64	182.20	186.89	21.9
12	5.17	180.00	179.01	0.9
13	4.77	170.50	171.10	0.3
14	4.43	167.50	163.44	16.4
15	4.13	160.00	156.43	12.7
16	3.88	148.90	150.31	1.9
17	3.65	148.00	145.07	8.5
18	3.44	143.00	140.59	5.8
19	3.26	140.90	136.70	17.6
20	3.10	139.00	133.27	32.8
21	2.95	133.50	130.21	10.8
22	2.82	131.50	127.45	16.4
23	2.70	131.50	124.92	43.3
24	2.58	128.00	122.58	29.3
25	2.48	126.00	120.41	31.2
26	2.38	123.00	118.37	21.4
27	2.30	120.50	116.45	16.4
28	2.21	120.50	114.63	34.4
29	2.14	117.90	112.89	25.0
30	2.07	116.00	111.23	22.7
31	2.00	110.90	109.64	1.5
32	1.94	110.00	108.10	3.6
33	1.88	109.00	106.61	5.6
34	1.82	108.50	105.17	11.0
35	1.77	108.50	103.76	22.4
36	1.72	108.00	102.39	31.4
37	1.68	101.00	101.05	
38	1.63	98.50	99.73	1.5
39	1.59	97.00	98.43	2.0
40	1.55	96.50	97.15	0.4
41	1.51	96.00	95.88	0.0
42	1.48	95.40	94.62	0.6
43	1.44	94.20	93.36	0.7
44	1.41	94.00	92.11	3.5
45	1.38	91.00	90.86	0.0
46	1.35	90.00	89.61	0.1
47	1.32	89.50	88.34	1.3
48	1.29	87.50	87.06	0.1
49	1.27	86.00	85.77	0.0
50	1.24	82.30	84.44	4.5
51	1.22	79.20	83.08	15.0
52	1.19	78.00	81.69	13.5
53	1.17	76.50	80.23	13.9
54	1.15	72.50	78.71	38.5
55	1.13	72.00	77.10	26.0

56	1.11	71.00	75.37	19.11
57	1.09	68.00	73.48	30.07
58	1.07	63.00	71.37	70.02
59	1.05	59.80	68.90	82.82
60	1.03	59.70	65.82	37.48
61	1.02	53.90	61.36	55.72

Tabla 10.- Períodos de retorno asociados con los datos observados en la estación climatológica La Boca

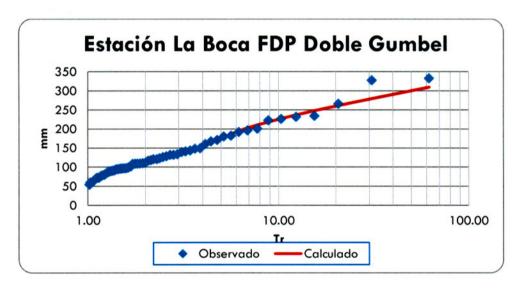


Figura 22.- Períodos de retorno asociados con los datos observados en la estación climatológica La Boca.

3.1.4.- Análisis de frecuencias de las lluvias máximas en 24 horas en la estación climatológica Laguna de Sánchez.

Una vez obtenida la función de distribución de probabilidad que mejor se ajustó se procedió a la determinación de las precipitaciones máximas en 24 horas para diferentes períodos de retorno, los resultados se muestran en la Tabla 11. Figura 23

Períodos de retorno	aiustados	a la	FDP	Doble	Gumbel
---------------------	-----------	------	------------	-------	--------

No de orden	Tr	Observado	Calculado	Error Cuadrático
1	45.00	345.0	323.0	482.1
2	22.50	300.0	279.0	441.6
3	15.00	286.5	251.2	1243.7
4	11.25	260.0	229.8	913.7
5	9.00	185.0	211.3	692.3
6	7.50	170.0	194.2	586.1
7	6.43	160.0	177.3	299.9
8	5.63	151.0	159.7	76.3
9	5.00	145.0	141.5	12.0
10	4.50	128.0	125.5	6.4
11	4.09	115.0	113.7	1.8
12	3.75	109.0	105.1	15.1
13	3.46	96.0	98.6	6.8
14	3.21	93.0	93.4	0.1
15	3.00	85.0	89.0	15.7
16	2.81	80.1	85.2	25.6
17	2.65	79.0	81.8	7.9
18	2.50	75.0	78.8	14.3
19	2.37	70.0	76.0	36.3
20	2.25	70.0	73.5	12.1
21	2.14	67.5	71.1	12.9
22	2.05	66.3	68.9	6.6
23	1.96	66.0	66.7	0.6
24	1.88	65.5	64.7	0.6
25	1.80	65.0	62.8	4.9
26	1.73	65.0	60.9	16.8
27	1.67	61.5	59.1	5.8
28	1.61	57.0	57.3	0.1
29	1.55	54.5	55.6	1.1
30	1.50	50.0	53.9	14.8
31	1.45	50.0	52.2	4.6
32	1.41	48.0	50.5	6.0
33	1.36	48.0	48.8	0.6
34	1.32	46.5	47.1	0.3
35	1.29	40.5	45.3	23.2
36	1.25	40.0	43.6	12.6
37	1.22	40.0	41.7	3.0
38	1.18	40.0	39.8	0.0
39	1.15	34.5	37.8	10.9
40	1.13	32.0	35.6	13.2
41	1.10	31.0	33.2	5.0
42	1.07	30.5	30.5	
43	1.05	30.0	27.1	8.5
44	1.02	22.5	22.3	0.1

Tabla 11.- Períodos de retorno asociados con los datos observados en la estación climatológica Laguna de Sánchez.

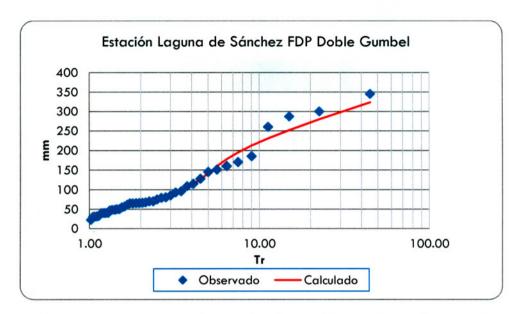


Figura 23.- Períodos de retorno asociados con los datos observados en la estación climatológica Laguna de Sánchez.

3.1.5.-Estimación de las tormentas de diseño para diferentes períodos de retorno.

Una vez obtenidos los períodos de retorno asociados a los datos observados en las tres estaciones, se procedió a estimar las tormentas de diseño para distintos períodos de retorno hasta los 10 000 años, los resultados se muestran en la Tabla 12.

> Lluvias máximas en 24 horas proyectadas con la FDP que más se ajustó

	T Dr que mas se ajusto.								
Tr	E	stación C	limatológica						
1.1	El Cerrito	La Boca	Laguna de Sánchez						
2	100.63	109.64	67.79						
5	182.79	175.84	141.54						
10	240.04	225.34	220.29						
20	281.18	259.92	271.14						
50	329.27	300.15	329.51						
100	363.93	329.10	371.36						
200	398.01	357.56	412.45						
500	442.70	394.82	466.19						
1000	476.32	422.92	506.81						
2000	509.94	450.81	547.43						
5000	553.73	488.28	599.92						
10000	589.17	516.17	639.92						

Tabla 12.-Tormentas de diseño estimadas con la FDP Doble Gumbel.

3.2.- Determinación del Número de Escurrimiento en la cuenca de la presa La Boca.

Para determinar el Número de Escurrimiento en la cuenca de la presa de La Boca, se hizo la discretización en tres principales subcuencas correspondientes a los tres arroyos La Chueca, El Puerco y Escamilla.

Para realizar este análisis, se analizaron las cartas de INEGI 1:50000 G14C25, G14C26, G14C27, G14C35, G14C36, G14C37, G14C45, G14C46 y G14C47, con las cuales se realizó el Modelo Hidrológico como se presenta en la figura 24.

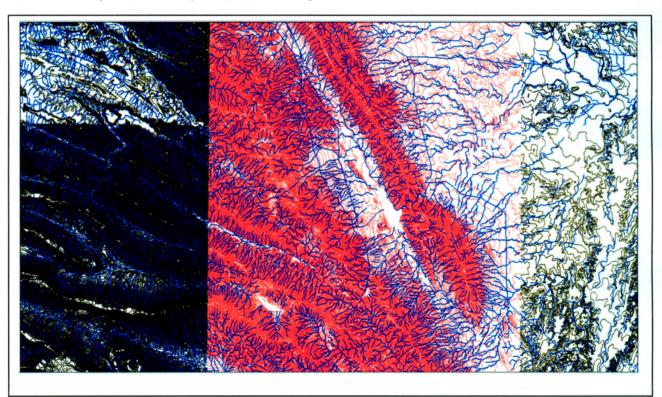


Figura 24.- Hidrografía de la cuenca de la presa La Boca.

Con base en la información hidrográfica se determinó el Modelo Hidrológico discretizado en las tres subcuencas principales como se muestra en la figura 25.

Modelo hidrológico de la cuenca de la presa La Boca

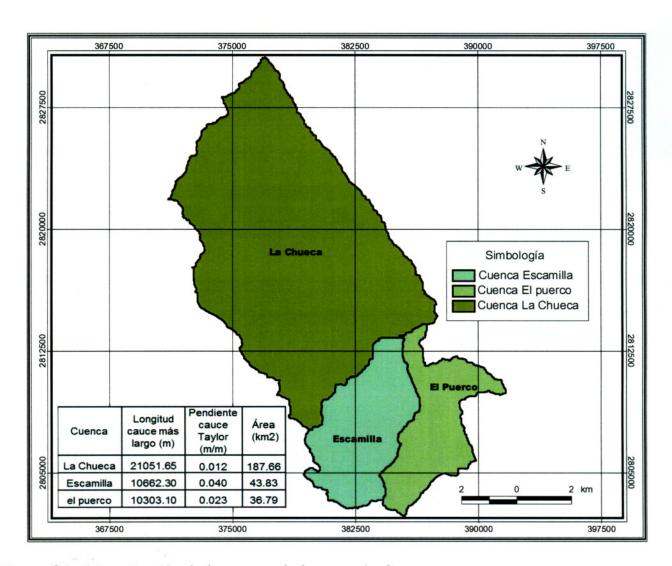


Figura 25.- Discretización de la cuenca de la presa La Boca.

3.2.1.- Clasificación de la Cubierta Vegetal

Para calcular las avenidas de diseño en cada una de las subcuencas, es necesario calcular la precipitación en exceso (o efectiva), para esto se puede aplicar el método de los números de escurrimiento N, el cual depende exclusivamente del uso y tipo del suelo así como de la cobertura vegetal, para lo cual con base en la información de las cartas de INEGI 1:50000 G14C25, G14C26, G14C27, G14C35, G14C36, G14C37, G14C45, G14C46 y G14C47 obtuvo la cobertura vegetal existente misma que se muestra en la figura 26.

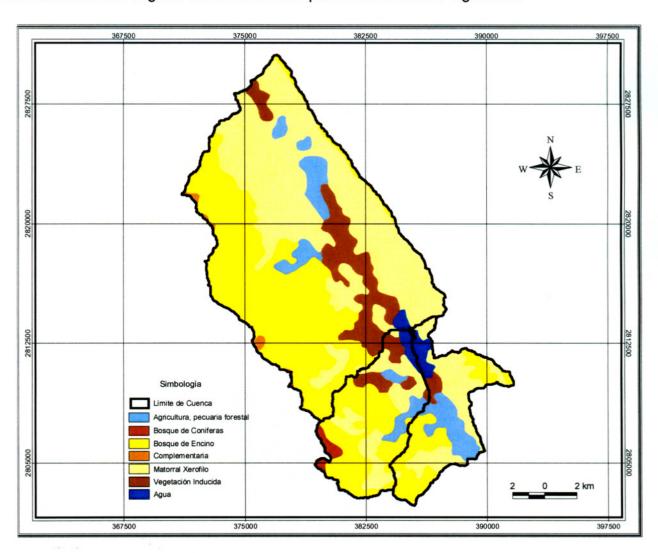


Figura 26.- Cobertura vegetal en la cuenca de la presa La Boca,

3.2.2.- Clasificación de Tipos de Suelo

Aunque se puede obtener los números de escurrimiento para la cuenca de la presa La Boca mediante información cartográfica, fue necesario calcular este valor con el propósito de obtener los valores más cercanos a la realidad, por lo que utilizando la información de los tipos de suelo que conforman esta cuenca y utilizando también la información de las cartas de INEGI 1:50000 G14C25, G14C26, G14C27, G14C35, G14C36, G14C37, G14C45, G14C46 y G14C47 es necesario clasificar el tipo para de suelo en los cuatro grupos que se muestran en la tabla 13. Figura 28.

A continuación se muestra la descripción de los tipos de suelo en los cuatro grupos con base en la clasificación publicada por la CNA, en 1987:

Tipo A.- Suelos de gravas y de arenas de tamaño medio, limpias y mezclas de ambas. Estos generan el menor escurrimiento.

Tipo B.- Suelos de arenas finas, limos orgánicos e inorgánicos, mezcla de arena y limo. Generan escurrimiento inferior al medio.

Tipo C.- Suelos de arenas muy finas, arcillas de baja plasticidad, mezcla de arena, limo y arcilla. Generan escurrimiento superior al medio.

Tipo D.- Suelos arcillosos de alta plasticidad, con subhorizontes casi impermeables cerca de la superficie. Generan el mayor escurrimiento.

Valores del número de escurrimiento N en la cuenca hidrológica.

Uso de suelo	Tipo de suelo						
Oso de soeio	Α	В	С	D			
Agrícola, pecuaria forestal	65.0	81.0	88.0	91.0			
Bosque de coníferas	36.0	55.0	70.0	77.0			
Bosque de encino	36.0	60.0	73.0	79.0			
Complementaria	30.0	58.0	71.0	78.0			
Matorral Xerofilo	50.0	69.0	79.0	84.0			
Vegetación inducida	50.0	69.0	79.0	84.0			
Zona urbana	95.0	95.0	95.0	95.0			

Tabla 13.-Valores del número de escurrimiento N en la cuenca hidrológica.

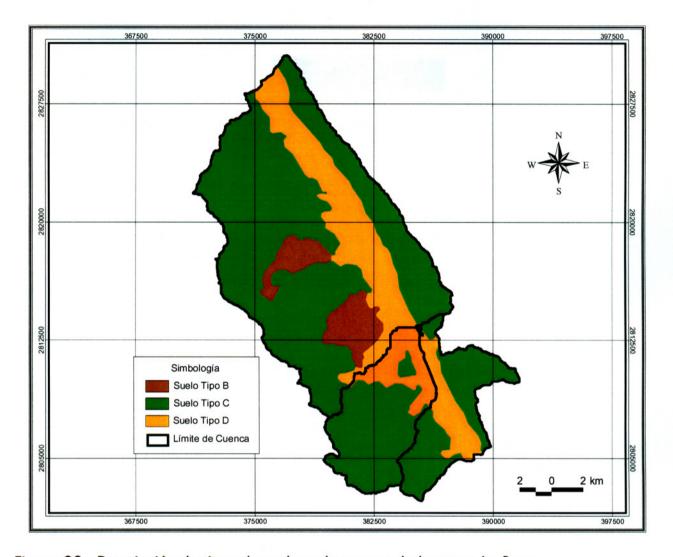


Figura 28.- Descripción de tipos de suelo en la cuenca de la presa La Boca.

3.2.3- Clasificación del Número de Escurrimiento

Así mismo, el valor del número de escurrimiento es un valor que oscila, de acuerdo con diferentes referencias bibliográficas, entre 6 y 100, siendo los valores correspondientes para suelos muy permeables y suelos impermeables respectivamente (zonas urbanas pavimentadas), también con base en las cartas de INEGI 1:50000 G14C25, G14C26, G14C27, G14C35, G14C36, G14C37, G14C46 y G14C47 se obtuvo el Número de escurrimiento Para toda la cuenca misma que se muestra en la figura 27.

Números de Escurrimiento

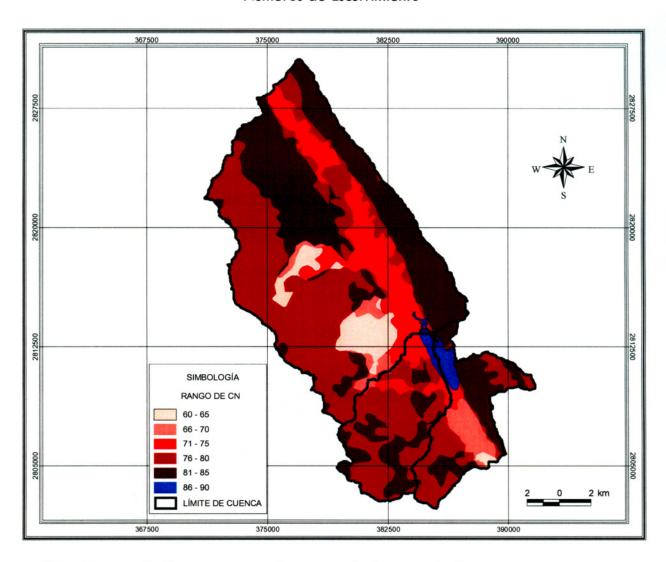


Figura 27.- Números de Escurrimiento en la cuenca de la presa La Boca

3.2.4- Cálculo de los Números de Escurrimiento para cada subcuenca

Una vez obtenida la información de cada subcuenca referente a la cubierta vegetal, tipo de suelo y uso de suelo, se procedió a calcular el número de escurrimiento de la siguiente manera:

Mediante la transposición de cada una de las capas de información (tipo y uso de suelo y cubierta vegetal, utilizando cada una de las área de la superficie parciales multiplicándola por el número de curva correspondiente se obtiene un valor parcial para cada transecto de la subcuenca, posteriormente se suman todas las áreas parciales así como los productos parciales de los números de escurrimiento haciendo la división de la primera entre la segunda obteniendo de esta manera el Número de Escurrimiento para cada subcuenca de la presa los cuales se muestran en la tabla 14.

Subcuenca	Nombre	CN
1	La Chueca	78
2	Escamilla	77
3	El Puerco	79

Tabla 14.- Números de escurrimiento para cada una de las subcuencas de la presa La Boca

3.3.- Longitud y pendiente del cauce principal.

El cauce principal es la corriente de mayor longitud dentro de la cuenca (o subcuenca) y su pendiente es uno de los indicadores más importantes del grado de respuesta de una cuenca a una tormenta. Es decir si se tienen dos cuencas con la misma forma y área, pero con diferente pendiente del cauce principal, se producirá, ante una tormenta dada, una respuesta más rápida y un gasto mayor en aquella cuenca con mayor pendiente.

Con las curvas de nivel (escala 1: 50,000) y la red de ríos, de definió en cada subcuenca el cauce principal, así como su longitud y pendiente mediante el uso del Arc View.

La pendiente del cauce principal se calculó con el método de Taylor - Schwarz, que consiste en dividir el cauce principal en n tramos (los tramos corresponden al tramo del cauce entre cada curva de nivel), y posteriormente calcular la pendiente media como (Aparicio, 1997):

$$S = \begin{bmatrix} L \\ \frac{I_1}{\sqrt{S_1}} + \frac{I_2}{\sqrt{S_2}} + \dots + \frac{I_m}{\sqrt{S_m}} \end{bmatrix}^2$$

donde li es la longitud del tramo i.

Los resultados se muestran en las tablas 15, 16 y 17. Figuras 29, 30 y 31.

				HUECA				
Tramo	longitud del cauce Distancia Acumulada (m)		Criterio Taylor Schwarzt					
		Elevación del cauce (msnm)	longitud parcial (m)	desnivel (m)	Raíz de la pendiente del segmento	pendiente	pendiente cauce	
TO	0.00	2000.00	-	-		-	0.01	
TI	73.24	1900.00	73.24	100.000	1.168	62.679		
T2	159.61	1800.00	86.37	100.000	1.076	80.268		
Т3	198.11	1700.00	38.50	100.000	1.612	23.889		
T4	242.28	1600.00	44.17	100.000	1.505	29.356		
T5	345.17	1500.00	102.89	100.000	0.986	104.366		
T6	407.40	1400.00	62.23	100.000	1.268	49.091		
T7 T8	520.26	1320.00	112.86	20.000	0.842 1.099	134.049		
T9	536.81 606.96	1300.00 1280.00	16.55 70.15	20.000	0.534	15.055 131.379		
T10	629.42	1260.00	22.46	20.000	0.534	23.801		
T11	661.76	1240.00	32.34	20.000	0.786	41.124		
T12	700.22	1220.00	38.46	20.000	0.721	53.333		
T13	725.15	1200.00	24.93	20.000	0.896	27.834		
T14	774.76	1180.00	49.61	20.000	0.635	78.134		
T15	845.60	1160.00	70.84	20.000	0.531	133.322		
T16	881.11	1140.00	35.51	20.000	0.750	47.316		
T17	931.61	1120.00	50.50	20.000	0.629	80.246		
T18	999.83	1100.00	68.22	20.000	0.541	125.995		
T19	1057.92	1080.00	58.09	20.000	0.587	99.000		
T20	1097.14	1060.00	39.22	20.000	0.714	54.922		
T21	1129.34	1040.00	32.20	20.000	0.788	40.857		
T22	1172.66	1020.00	43.32	20.000	0.679	63.756		
T23	1273.06	1000.00	100.40	20.000	0.446	224.950		
T24	1327.87	980.00	54.81	20.000	0.604	90.735		
T25	1428.97	960.00	101.10	20.000	0.445	227.306		
T26	1540.25	940.00	111.28	20.000	0.424	262.489		
T27	1598.51	920.00	58.26	20.000	0.586	99.435		
T28	1708.12	900.00	109.61	20.000	0.427	256.602		
T29	1746.59	880.00	38.47	20.000	0.721	53.354		
T30	1834.02	860.00	87.43	20.000	0.478	182.800		
T31	1946.69	840.00	112.67	20.000	0.421	267.422		
T32	2049.84	820.00	103.15	20.000	0.440	234.255		
T33	2206.46	800.00 780.00	156.62 140.05	20.000	0.3 <i>57</i> 0.378	438.284 370.604		
T35	2346.51 2497.49	760.00	150.98	20.000	0.364	414.824		
T36	2657.51	740.00	160.02	20.000	0.354	452.633		
T37	2849.07	720.00	191.56	20.000	0.323	592.846		
T38	3137.95	700.00	288.88	20.000	0.263	1097.896		
T39	3455.87	680.00	317.92	20.000	0.251	1267.540		
T40	3832.49	660.00	376.62	20.000	0.230	1634.331		
T41	4312.50	640.00	480.01	20.000	0.204	2351.584		
T42	5038.22	620.00	725.72	20.000	0.166	4371.582		
T43	5959.44	600.00	921.22	20.000	0.147	6252.159		
T44	6570.81	590.00	611.37	10.000	0.128	4780.311		
T45	6823.37	580.00	252.56	10.000	0.199	1269.249		
T46	7256.23	570.00	432.86	10.000	0.152	2847.877		
T47	8226.76	560.00	970.53	10.000	0.102	9561.223		
T48	9084.28	550.00	857.52	10.000	0.108	7940.839		
T49	9911.05	540.00	826.77	10.000	0.110	7517.563		
T50	11487.65	530.00	1576.60	10.000	0.080	19796.221		
T51	12863.28	520.00	1375.63	10.000	0.085	16134.387		
T52	13565.29	510.00	702.01	10.000	0.119	5881.864		
T53	14861.12		1295.83	10.000	0.088	14751.020		
T54	17611.51	480.00	2750.39	20.000	0.085	32253.468		
T55	21051.65	460.00	3440.14	20.000	0.076	45117.931		

Tabla 15.- Pendiente del cauce del arroyo La Chueca.

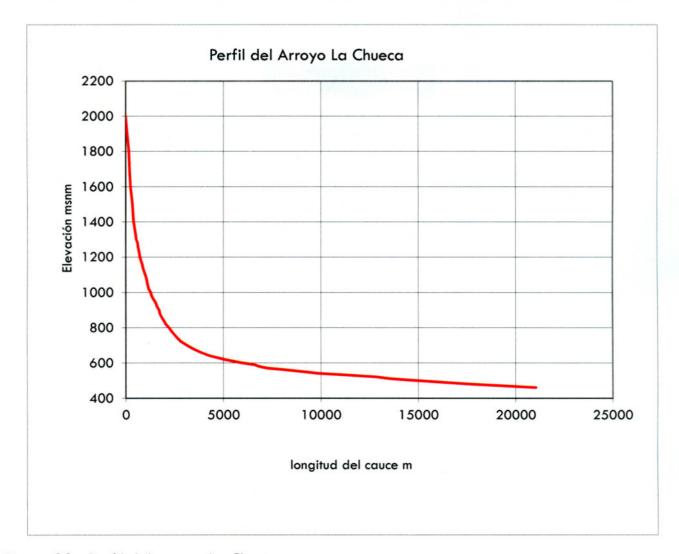


Figura 29.- Perfil del arroyo La Chueca.

	longitud del		ESCAMILLA Criterio Taylor Schwarzt						
Tramo	cauce Distancia Acumulada (m)	Elevación del cauce (msnm)	longitud parcial (m)	desnivel (m)	Raíz de la pendiente del segmento	pendiente	pendiente cauce		
TO	0.00	1540.00	0	-		-	0.04		
TI	35.35	1520.00	35.35	20.000	0.752	46.997			
T2	66.35	1500.00	31.00	20.000	0.803	38.595			
Т3	111.06	1480.00	44.71	20.000	0.669	66.849			
T4	145.72	1460.00	34.66	20.000	0.760	45.628			
T5	182.99	1440.00	37.27	20.000	0.733	50.877			
T6	224.64	1420.00	41.65	20.000	0.693	60.105			
T7	285.43	1400.00	60.79	20.000	0.574	105.982			
T8	375.74	1380.00	90.31	20.000	0.471	191.906			
T9	489.49	1360.00	113.75	20.000	0.419	271.276			
T10	524.84	1340.00	35.35	20.000	0.752	46.997			
T11	560.80	1320.00 1300.00	35.96	20.000	0.746	48.219			
T13	614.94		54.14	20.000	0.608	89.076			
T14	776.39 853.90	1280.00	161.45	20.000	0.352	458.714			
T15	983.80	1260.00	77.51 129.90	20.000	0.508 0.392	152.588			
T16	1081.37	1220.00	97.57	20.000	0.392	331.054 215.506			
T17	1292.52	1200.00	211.15	20.000	0.308	686.075			
T18	1392.24	1180.00	99.72	20.000	0.448	222.668	-		
T19	1482.87	1160.00	90.63	20.000	0.470	192.927			
T20	1670.20	1140.00	187.33	20.000	0.327	573.319			
T21	1762.38	1120.00	92.18	20.000	0.466	197.897			
T22	1779.50	1100.00	17.12	20.000	1.081	15.839			
T23	1894.44	1080.00	114.94	20.000	0.417	275.545			
T24	1963.24	1060.00	68.80	20.000	0.539	127.605			
T25	2029.92	1040.00	66.68	20.000	0.548	121.753			
T26	2087.83	1020.00	57.91	20.000	0.588	98.541			
T27	2122.61	1000.00	34.78	20.000	0.758	45.865			
T28	2239.71	980.00	117.10	20.000	0.413	283.348			
T29	2293.33	960.00	53.62	20.000	0.611	87.796			
T30	2440.60	940.00	147.27	20.000	0.369	399.628			
T31	2547.91	920.00	107.31	20.000	0.432	248.568			
T32	2616.92	900.00	69.01	20.000	0.538	128.190			
T33	2810.31	880.00	193.39	20.000	0.322	601.362			
T34	2904.09	860.00	93.78	20.000	0.462	203.072			
T35	2969.49	840.00	65.40	20.000	0.553	118.264			
T36	3121.25	820.00	151.76	20.000	0.363	418.043			
T37 T38	3306.05 3362.11	800.00	184.80	20.000	0.329	561.743			
T39	3450.04	780.00 760.00	56.06 87.93	20.000	0.597	93.857			
T40	3815.78	740.00	365.74	20.000	0.477	184.370 1564.025			
T41	3947.08	720.00	131.30	20.000	0.390	336.420			
T42	4209.17	700.00	262.09	20.000	0.276	948.769			
T43	4768.38	680.00	559.21	20.000	0.189	2956.973			
T44	4959.01	660.00	190.63	20.000	0.134	588.534			
T45	5022.66	640.00	63.65	20.000	0.561	113.549			
T46	5104.28	620.00	81.62	20.000	0.495	164.885			
T47	5190.80	600.00	86.52	20.000	0.481	179.953			
T48	5319.32	580.00	128.52	20.000	0.394	325.792			
T49	5663.55	560.00	344.23	20.000	0.241	1428.098			
T50	6335.77	540.00	672.22	20.000	0.172	3897.195			
T51	7005.67	520.00	669.90	20.000	0.173	3877.037			
T52	7959.78	500.00	954.11	20.000	0.145	6589.958			
T53	9353.42	480.00	1393.64	20.000	0.120	11633.514			
T54	10662.30	460.00	1308.88	20.000	0.124	10588.508			
			10662.30			53299.86			

Tabla 16.- Pendiente del cauce del arroyo Escamilla

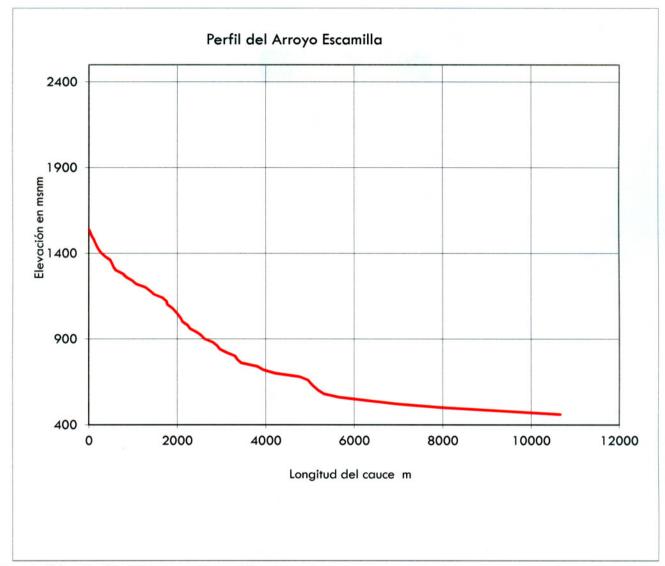


Figura 30.- Perfil del arroyo Escamilla

			EL PUERCO								
Tramo	longitud del	Criterio Taylor Schwarzt									
	cauce Distancia Acumulada (m)	Elevación del cauce (msnm)	longitud parcial (m)	desnivel (m)	Raíz de la pendiente del segmento	pendiente	pendiente cauce				
то	0.00	1300.00	0	-		-	0.02				
TI	32.31	1280.00	32.31	20.000	0.787	41.067					
T2	70.63	1260.00	38.32	20.000	0.722	53.042					
Т3	108.79	1240.00	38.16	20.000	0.724	52.711					
T4	156.14	1220.00	47.35	20.000	0.650	72.856					
T5	200.98	1200.00	44.84	20.000	0.668	67.140					
Т6	252.53	1180.00	51.55	20.000	0.623	82.761					
T7	370.15	1160.00	117.62	20.000	0.412	285.238					
Т8	431.99	1140.00	61.84	20.000	0.569	108.740					
Т9	451.07	1120.00	19.08	20.000	1.024	18.636					
T10	467.11	1100.00	16.04	20.000	1.117	14.365					
T11	487.80	1080.00	20.69	20.000	0.983	21.044					
T12	511.71	1060.00	23.91	20.000	0.915	26.143					
T13	549.73	1040.00	38.02	20.000	0.725	52.421					
T14	641.99	1020.00	92.26	20.000	0.466	198.155					
T15	676.40	1000.00	34.41	20.000	0.762	45.135					
T16	711.88	980.00	35.48	20.000	0.751	47.256					
T17	765.43	960.00	53.55	20.000	0.611	87.624					
T18	849.10	940.00	83.67	20.000	0.489	171.135					
T19	915.22	920.00	66.12	20.000	0.550	120.222					
T20	989.95	900.00	74.73	20.000	0.517	144.453					
T21	1078.98	880.00	89.03	20.000	0.474	187.841					
T22	1169.00	860.00	90.02	20.000	0.471	190.982					
T23	1208.35	840.00	39.35	20.000	0.713	55.195					
T24	1252.44	820.00	44.09	20.000	0.674	65.463					
T25	1321.12	800.00	68.68	20.000	0.540	127.271					
T26	1413.83	780.00	92.71	20.000	0.464	199.607					
T27	1516.33	760.00	102.50	20.000	0.442	232.044					
T28	1651.89	740.00	135.56	20.000	0.384	352.925					
T29	1773.01	720.00	121.12	20.000	0.406	298.063					
T30	1944.03	700.00	171.02	20.000	0.342	500.098					
T31	2070.99	680.00	126.96	20.000	0.397	319.879					
T32	2281.59	660.00	210.60	20.000	0.308	683.396					
T33	2478.35	640.00	196.76	20.000	0.319	617.149					
T34	2705.83	620.00	227.48	20.000	0.297	767.185					
T35	2903.77	600.00	197.94	20.000	0.318	622.709					
T36	3205.63	580.00	301.86	20.000	0.257	1172.717					
T37	3669.57	560.00	463.94	20.000	0.208	2234.486					
T38	4305.74	540.00	636.17	20.000	0.177	3587.937					
T39	5380.00	520.00	1074.26	20.000	0.136	7873.161					
T40	6701.68	500.00	1321.68	20.000	0.123	10744.210					
T41	8077.10	480.00	1375.42	20.000	0.121	11406.122					
T42	10303.10	460.00	2226.00	20.000	0.095	23484.036					
-			10303.10			67432.62					

Tabla 17.- Pendiente del cauce del arroyo El Puerco.

ANTE LA INFLUENCIA DE FENÓMENOS HIDROMETEOROLÓGICOS EXTREMOS.

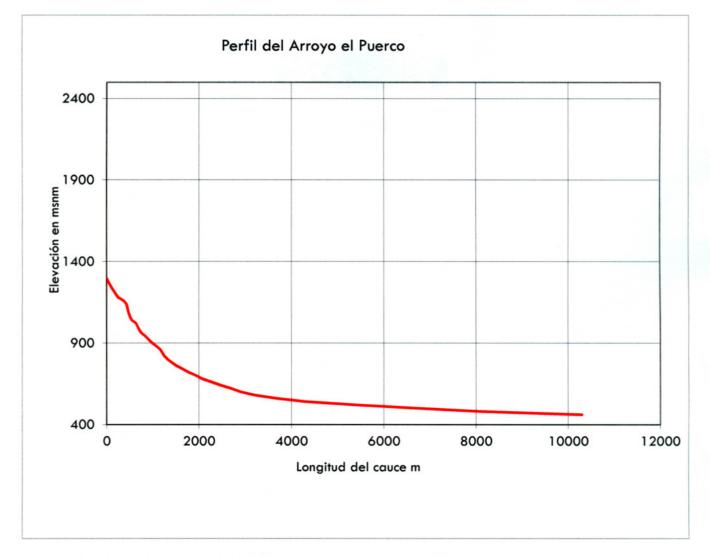


Figura 31.- Perfil del arroyo El Puerco.

3.3.1.- Tiempos de concentración y retraso

El tiempo de concentración es el tiempo que tarda el agua en llegar a la salida de la cuenca desde el punto más alejado de la cuenca, además cuando la tormenta tiene una duración mayor o igual al tiempo de concentración de la cuenca se presenta el gasto máximo para dicha tormenta

Para el cálculo del tiempo de concentración se puede utilizar cualquiera de las siguientes formulaciones:

Formulación de Rowe

$$Tc = \left(\frac{0.86L^3}{\Delta H}\right)^{0.385} = \left(\frac{0.86L^2}{S}\right)^{0.385}$$

Donde

Tc= Tiempo de concentración en hr.

L= Longitud del cauce principal en km.

S= Pendiente del cauce principal al millar

Formulación de Kirpich

$$Tc = 0.0003245 \left(\frac{L}{\sqrt{S}}\right)^{.0.77}$$

Donde

Tc= Tiempo de concentración en hr

L =Longitud del cauce principal en m

S = Pendiente media del cauce principal (relación directa)

Formulación de Chow

Para Cuencas pequeñas (con área menor que 250km²) el tiempo de concentración es igual al tiempo de retraso, es decir

$$Tc = Tr$$

Y para cuencas grandes (Con áreas mayores que 250km²)

$$Tc = \frac{Tr}{0.6}$$

El tiempo de retraso, es el tiempo que existe entre el centroide de la tormenta y el pico de la avenida, y para cuencas no aforadas se puede calcular como:

$$Tr = 0.00505 \left(\frac{L}{\sqrt{S}}\right)^{0.64}$$

donde

Tr= Tiempo de retraso en horas

L =Longitud del cauce principal en m

S = Pendiente media del cauce principal en porcentaje

Para obtener el tiempo de retraso en la cuenca de la presa La Boca se utilizó la formulación de Kirpich, pero se utilizó el criterio de Chow en la parte que corresponde al tamaño de las cuencas de donde se destaca que para cuencas pequeñas (con área menor que 250km²) el tiempo de concentración es igual al tiempo de retraso, es decir

$$Tc = Tr$$

Los resultados se muestran en la tabla 20.

3.3.2.- Determinación de la influencia de cada una de las estaciones climatológicas en las subcuencas.

Tomando en cuenta la información de la cantidad de estaciones localizadas en la cuenca de la presa de La Boca y estaciones cercanas de acuerdo a la información de la Dirección Técnica del OCRB, se construyeron los polígonos de Thiessen para determinar las estaciones que tienen influencia en cada una de las subcuencas.

El método de los polígonos de Thiessen consiste básicamente en unir con líneas rectas las estaciones climatológicas más cercanas entre sí, formando triángulos. Posteriormente se trazan mediatrices a cada uno de los lados de los triángulos, con lo cual se formarán polígonos con las líneas de las mediatrices y el parteaguas de cada una de las subcuencas.

Con el software de ARC-View se calcularon los polígonos de Thiessen, así como el área de cada uno de los polígonos respecto a cada subcuenca y posteriormente la influencia de cada una de las estaciones en cada subcuenca. Los valores de los pesos de Thiessen en cada subcuenca se muestran en las figuras 32 y 33 y en la tabla 19.

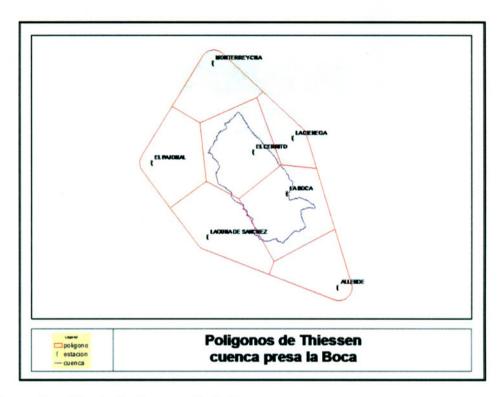


Figura 32.-Determinación de Polígonos de Thiessen.

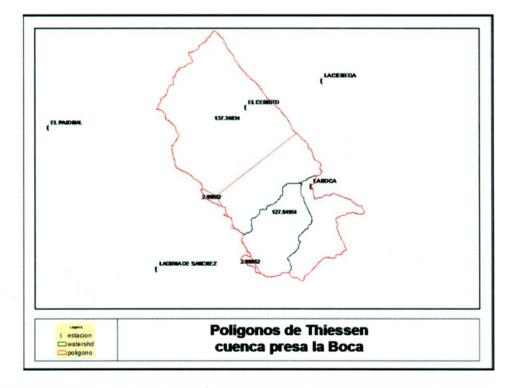


Figura 33.-Determinación del área de influencia de las estaciones climatológicas.

Los valores de los factores de influencia de cada una de las estaciones en cada una de las subcuencas se utilizarán para calcular la precipitación media en cada una de las cuencas para los diferentes periodos de retorno, y posteriormente mediante la aplicación del modelo lluvia – escurrimiento se podrán calcular las avenidas correspondientes, tablas 18 y 19.

Nombre	Estaciones							
Nombre	El Cerrito	La Boca	Laguna Sánchez	Total				
La Chueca	137.34	48.68	1.64	187.66				
Escamilla	0.00	42.47	1.36	43.83				
El puerco	0.00	36.79	0.00	36.79				

Tabla 18.- Área de influencia de las estaciones por subcuenca.

Estaciones convencionales

Subcuenca	Nombre	Estaciones				
Jobeoenea	Nombre	El Cerrito	La Boca	Laguna de	Sánchez	
1	La Chueca	0.73	0.26		0.01	
2	Escamilla	0.00	0.97		0.03	
3	El Puerco	0.00	1.00		0.00	

Tabla 19.- Pesos por subcuenca.

Con los resultados obtenidos se obtiene la información necesaria para calcular el tiempo de concentración y retraso de las tormentas como se muestran en la tabla 20.

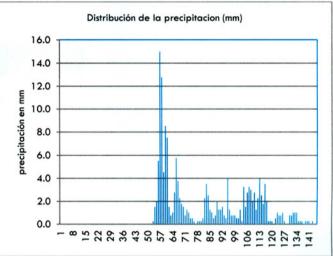
Subcuenca	Nombre	Longitud cauce más largo (m)	Pendiente cauce Taylor (m/m)	Área (km2)	Tc (hr)	CN	Tiempo retraso (hr)	Tiempo de retraso
1	La Chueca	21051.65	0.012	187.66	3.77	78	3.77	226.40
2	Escamilla	10662.30	0.040	43.83	1.42	77	1.42	84.91
3	el puerco	10303.10	0.023	36.79	1.70	79	1.70	101.76

Tabla 20.- Calculo de tiempo de concentración y retraso.

3.3.3.- Determinación de la influencia de los pluviómetros automáticos

Otra componente importante que tiene influencia en el gasto máximo de las avenidas es la distribución temporal de la precipitación, en virtud de que en la cuenca de esta presa no se cuenta con pluviómetros automáticas, se tomó la decisión de utilizar la información de la distribución temporal de la lluvia de los registros de las estaciones automáticas Protección Civil y La Estanzuela, estaciones del Sistema de Alertamiento Hidrometeorológico de Monterrey por su cercanía con la cuenca en estudio, la primera se ubica en las instalaciones de la Dirección de Protección civil del Estado y la segunda en la colonia La Estanzuela ambas en el municipio de Monterrey. Los valores de lluvia a cada 10 minutos para las distintas tormentas que se utilizaron se muestran en las tablas 21, 22, 23 y 24, figuras; 34, 35, 36, 37, 38, 39, 40 y 41.

Fecha	tiempo (min)	tiempo Acum.(min)	precipitación (mm)	Precipitación acumulada (mm)	Distribución de la precipitación
15/09/2002 08:00					
15/09/2002 08:10	10	10	0.0	0.00	0.00
15/09/2002 08:20	10	20	0.0	0.00	0.00
15/09/2002 08:30	10	30	0.0	0.00	0.00
15/09/2002 08:40	10	40	0.0	0.00	0.00
15/09/2002 08:50	10	50	0.0	0.00	0.00
15/09/2002 09:00	10	60	0.0	0.00	0.00
15/09/2002 09:10	10	70	0.0	0.00	0.00
15/09/2002 09:20	10	80	0.0	0.00	0.00
15/09/2002 09:30	10	90	0.0	0.00	0.00
15/09/2002 09:40	10	100	0.0	0.00	0.00
15/09/2002 09:50	10	110	0.0	0.00	0.00
15/09/2002 10:00	10	120	0.0	0.00	0.00
15/09/2002 10:10	10	130	0.0	0.00	0.00
15/09/2002 10:20	10	140	0.0	0.00	0.00
15/09/2002 10:30	10	150	0.0	0.00	0.00
15/09/2002 10:40	10	160	0.0	0.00	0.00
15/09/2002 10:50	10	170	0.0	0.00	0.00
15/09/2002 11:00	10	180	0.0	0.00	0.00
15/09/2002 11:10	10	190	0.0	0.00	0.00
15/09/2002 11:20	10	200	0.0	0.00	0.00
15/09/2002 11:30	10	210	0.0	0.00	0.00
15/09/2002 11:40	10	220	0.0	0.00	0.00
15/09/2002 11:50	10	230	0.0	0.00	0.00
15/09/2002 12:00	10	240	0.0	0.00	0.00
15/09/2002 12:10	10	250	0.0	0.00	0.00
15/09/2002 12:20	10	260	0.0	0.00	0.00
15/09/2002 12:30	10	270	0.0	0.00	0.00
15/09/2002 12:40	10	280	0.0	0.00	0.00
15/09/2002 12:50	10	290	0.0	0.00	0.00
15/09/2002 13:00	10	300	0.0	0.00	0.00
15/09/2002 13:10	10	310	0.0	0.00	0.00
15/09/2002 13:20	10	320	0.0	0.00	0.00
15/09/2002 13:30	10	330	0.0	0.00	0.00
15/09/2002 13:40	10	340	0.0	0.00	0.00
15/09/2002 13:50	10	350	0.0	0.00	0.00
15/09/2002 14:00	10	360	0.0	0.00	0.00
15/09/2002 14:10	10	370	0.0	0.00	0.00


15/09/2002 14:20	10	380	0.0	0.00	0.00
15/09/2002 14:30	10	390	0.0	0.00	0.00
15/09/2002 14:40	10	400	0.0	0.00	0.00
15/09/2002 14:50	10	410	0.0	0.00	0.00
15/09/2002 15:00	10	420	0.0	0.00	0.00
15/09/2002 15:10	10	430	0.0	0.00	0.00
15/09/2002 15:20	10	440	0.0	0.00	0.00
15/09/2002 15:30	10	450	0.0	0.00	0.00
15/09/2002 15:40	10	460	0.0	0.00	0.00
15/09/2002 15:50	10	470	0.0	0.00	0.00
15/09/2002 16:00	10	480	0.0	0.00	0.00
15/09/2002 16:10	10	490	0.0	0.00	0.00
15/09/2002 16:20	10	500	0.0	0.00	0.00
15/09/2002 16:30	10	510	0.0	0.00	0.00
15/09/2002 16:40	10	520	0.3	0.25	0.00
15/09/2002 16:50	10	530	1.5	1.75	0.01
15/09/2002 17:00	10	540	2.0	3.75	0.02
15/09/2002 17:10	10	550	5.5	9.25	0.06
15/09/2002 17:20	10	560	15.0	24.25	0.15
15/09/2002 17:30	10	570	12.8	37.00	0.13
15/09/2002 17:40	10	580	4.5	41.50	0.26
15/09/2002 17:50	10	590	8.5	50.00	0.20
15/09/2002 17:30	10	600	7.5	57.50	0.36
15/09/2002 18:10	10	610	1.5	59.00	0.37
15/09/2002 18:20	10	620	0.8	59.75	0.37
	10	630	1.0	60.75	0.37
15/09/2002 18:30	10	640	2.8	63.50	0.38
15/09/2002 18:40	10	650	5.8		
15/09/2002 18:50	10	660	3.8	69.25 73.00	0.43
15/09/2002 19:00	10	670	2.3	75.25	0.46
15/09/2002 19:10	10	680	1.8	77.00	0.47
15/09/2002 19:20	10	690	1.5	78.50	0.49
15/09/2002 19:30 15/09/2002 19:40	10	700	0.8	79.25	0.49
15/09/2002 19:50	10	710	1.3	80.50	0.50
15/09/2002 19:30	10	710	1.0	81.50	0.50
	10	730			
15/09/2002 20:10	10	740	0.5	82.00 82.50	0.51
15/09/2002 20:20	10	750	0.3	82.75	0.52
15/09/2002 20:30	10	760	0.0	82.75	0.52
15/09/2002 20:40 15/09/2002 20:50	10	770	0.0	83.00	0.52
15/09/2002 21:00	10	780	0.3	83.25	0.52
	10	790	0.3	83.50	0.52
15/09/2002 21:10	10	800			
15/09/2002 21:20		810	0.5 2.3	84.00 86.25	0.53
15/09/2002 21:30	10	820	3.5	89.75	0.56
15/09/2002 21:40	10	830	2.5	92.25	0.58
15/09/2002 21:50					
15/09/2002 22:00	10	840 850	1.3	93.50	0.58
15/09/2002 22:10	10	860	0.5	94.50	0.59
15/09/2002 22:20	10			95.00	0.59
15/09/2002 22:30	10	870	0.8	95.75	0.60
15/09/2002 22:40	10	880	2.0	97.75	0.61
15/09/2002 22:50	10	890	1.3	99.00	0.62
15/09/2002 23:00	10	900	1.3	100.25	0.63
15/09/2002 23:10	10	910	1.5	101.75	0.64
15/09/2002 23:20	10	920	0.8	102.50	0.64
15/09/2002 23:30	10	930	0.5	103.00	0.64
15/09/2002 23:40	10	940	4.0	107.00	0.67

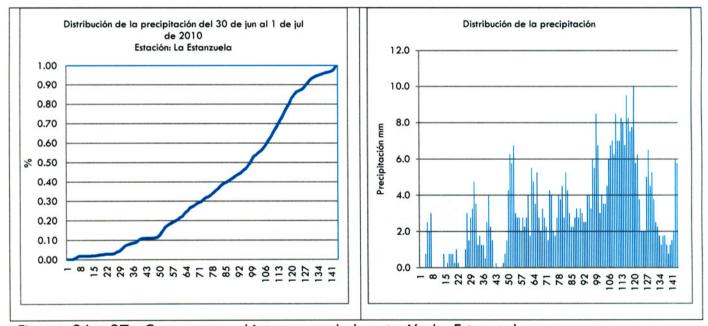
15/09/2002 23:50	10	950	1.3	108.25	0.68
16/09/2002 00:00	10	960	0.8	109.00	0.68
16/09/2002 00:10	10	970	0.8	109.75	0.69
16/09/2002 00:20	10	980	0.8	110.50	0.69
16/09/2002 00:30	10	990	0.5	111.00	0.69
16/09/2002 00:40	10	1000	0.5	111.50	0.70
16/09/2002 00:50	10	1010	1.3	112.75	0.70
16/09/2002 01:00	10	1020	0.3	113.00	0.71
16/09/2002 01:10	10	1030	3.3	116.25	0.73
16/09/2002 01:20	10	1040	1.5	117.75	0.74
16/09/2002 01:30	10	1050	2.8	120.50	0.7
16/09/2002 01:40	10	1060	3.3	123.75	0.77
16/09/2002 01:50	10	1070	3.0	126.75	0.79
16/09/2002 02:00	10	1080	2.0	128.75	0.80
16/09/2002 02:10	10	1090	2.8	131.50	0.83
16/09/2002 02:20	10	1100	1.3	132.75	0.83
16/09/2002 02:30	10	1110	2.3	135.00	0.84
16/09/2002 02:40	10	1120	4.0	139.00	0.87
16/09/2002 02:50	10	1130	2.5	141.50	0.88
16/09/2002 03:00	10	1140	1.8	143.25	0.90
16/09/2002 03:10	10	1150	3.5	146.75	0.93
16/09/2002 03:20	10	1160	2.0	148.75	0.93
16/09/2002 03:30	10	1170	0.3	149.00	0.93
16/09/2002 03:40	10	1180	0.3	149.25	0.93
16/09/2002 03:50	10	1190	0.3	149.50	0.93
16/09/2002 04:00	10	1200	0.0	149.50	0.93
16/09/2002 04:10	10	1210	0.5	150.00	0.94
16/09/2002 04:10	10	1210	1.0	151.00	0.9
16/09/2002 04:20	10	1230	0.8	151.75	0.9
16/09/2002 04:40	10	1240	0.8	152.50	0.9
	10	1250	1.0	153.50	0.9
16/09/2002 04:50 16/09/2002 05:00	10	1260	0.3	153.75	0.9
	10	1270	0.0		0.9
16/09/2002 05:10	10	1280	0.0	153.75	
16/09/2002 05:20				153.75	0.9
16/09/2002 05:30	10	1290	0.8	154.50	0.9
16/09/2002 05:40	10	1300	0.8	155.25	0.9
16/09/2002 05:50	10	1310	1.0	156.25	0.9
16/09/2002 06:00	10	1320	1.0	157.25	0.9
16/09/2002 06:10	10	1330	1.0	158.25	0.9
16/09/2002 06:20	10	1340	0.3	158.50	0.9
16/09/2002 06:30	10	1350	0.3	158.75	0.9
16/09/2002 06:40	10	1360	0.3	159.00	0.9
16/09/2002 06:50	10	1370	0.0	159.00	0.9
16/09/2002 07:00	10	1380	0.3	159.25	1.0
16/09/2002 07:10	10	1390	0.3	159.50	1.0
16/09/2002 07:20	10	1400	0.3	159.75	1.0
16/09/2002 07:30	10	1410	0.0	159.75	1.0
	10	1420	0.3	160.00	1.0
16/09/2002 07:40 16/09/2002 07:50	10	1430	0.0	160.00	1.0

Tabla 21.- Valores de precipitación pluvial cada 10 minutos de la estación Protección Civil

Figuras 34 y 35.- Curva masa y hietograma de la estación Protección Civil

Estación La Estanzuela

fecha	tiempo (min)	tiempo Acum.(min)	Precipitación (mm)	Precipitación acumulada (mm)	Distribución de la precipitación
30/06/2010 08:00	10		0.00		
30/06/2010 08:10	10	10	0.00	0	0.00
30/06/2010 08:20	10	20	0.00	0.0	0.00
30/06/2010 08:30	10	30	0.00	0.0	0.00
30/06/2010 08:40	10	40	0.75	0.8	0.00
30/06/2010 08:50	10	50	2.50	3.3	0.01
30/06/2010 09:00	10	60	2.00	5.3	0.01
30/06/2010 09:10	10	70	3.00	8.3	0.02
30/06/2010 09:20	10	80	0.00	8.3	0.02
30/06/2010 09:30	10	90	0.00	8.3	0.02
30/06/2010 09:40	10	100	0.00	8.3	0.02
30/06/2010 09:50	10	110	0.00	8.3	0.02
30/06/2010 10:00	10	120	0.00	8.3	0.02
30/06/2010 10:10	10	130	0.00	8.3	0.02
30/06/2010 10:20	10	140	0.75	9.0	0.02
30/06/2010 10:30	10	150	0.00	9.0	0.02
30/06/2010 10:40	10	160	0.25	9.3	0.02
30/06/2010 10:50	10	170	0.75	10.0	0.02
30/06/2010 11:00	10	180	0.75	10.8	0.02
30/06/2010 11:10	10	190	0.75	11.5	0.03
30/06/2010 11:20	10	200	0.25	11.8	0.03
30/06/2010 11:30	10	210	1.00	12.8	0.03
30/06/2010 11:40	10	220	0.25	13.0	0.03
30/06/2010 11:50	10	230	0.00	13.0	0.03
30/06/2010 12:00	10	240	0.00	13.0	0.03
30/06/2010 12:10	10	250	0.00	13.0	0.03
30/06/2010 12:20	10	260	1.00	14.0	0.03
30/06/2010 12:30	10	270	3.00	17.0	0.04
30/06/2010 12:40	10	280	1.50	18.5	0.04
30/06/2010 12:50	10	290	2.75	21.3	0.05
30/06/2010 13:00	10	300	3.25	24.5	0.05
30/06/2010 13:10	10	310	4.75	29.3	0.07
30/06/2010 13:20	10	320	3.50	32.8	0.07
30/06/2010 13:30	10	330	1.25	34.0	0.08
30/06/2010 13:40	10	340	1.75	35.8	0.08
30/06/2010 13:50	10	350	1.25	37.0	0.08
30/06/2010 14:00	10	360	1.25	38.3	0.09
30/06/2010 14:10	10	370	0.50	38.8	0.09
30/06/2010 14:20	10	380	2.50	41.3	0.09
30/06/2010 14:30	10	390	4.00	45.3	0.10
30/06/2010 14:40	10	400	2.25	47.5	0.11
30/06/2010 14:50	10	410	1.50	49.0	0.11
30/06/2010 15:00	10	420	0.00	49.0	0.11
30/06/2010 15:10	10	430	0.25	49.3	0.11
30/06/2010 15:20	10	440	0.00	49.3	0.11
30/06/2010 15:30	10	450	0.00	49.3	0.11
30/06/2010 15:40	10	460	0.00	49.3	0.11
30/06/2010 15:50	10	470	0.25	49.5	0.11
30/06/2010 16:00	10	480	0.75	50.3	0.11
30/06/2010 16:10	10	490	1.50	51.8	0.12
30/06/2010 16:20	10	500	4.25	56.0	0.13
30/06/2010 16:30	10	510	6.25	62.3	0.14
30/06/2010 16:40	10	520	5.75	68.0	0.15
30/06/2010 16:50	10	530	6.75	74.8	0.17
30/06/2010 17:00	10	540	3.00	77.8	0.17
30/06/2010 17:10	10	550	2.75	80.5	0.18
30/06/2010 17:20	10	560	2.75	83.3	0.19
30/06/2010 17:30 30/06/2010 17:40	10	570	2.00	85.3 88.0	0.19
30/00/2010 1/:40	10	580	2./5	00.0	0.20



30/06/2010 18:00	10	600	2.75	93.0	0.21
30/06/2010 18:10	10	610	4.00	97.0	0.22
30/06/2010 18:20	10	620	1.75	98.8	0.22
30/06/2010 18:30	10	630	5.50	104.3	0.23
30/06/2010 18:40	10	640	4.75	109.0	0.24
30/06/2010 18:50	10	650	3.50	112.5	0.25
30/06/2010 19:00	10	660	5.25	117.8	0.26
30/06/2010 19:10	10	670	2.75	120.5	0.27
30/06/2010 19:20	10	680	2.00	122.5	0.27
30/06/2010 19:30	10	690	3.25	125.8	0.28
30/06/2010 19:40	10	700	2.75	128.5	0.29
30/06/2010 19:50	10	710	2.25	130.8	0.29
30/06/2010 20:00	10	720	1.50	132.3	0.30
30/06/2010 20:10	10	730	4.25	136.5	0.31
30/06/2010 20:20	10	740	4.00	140.5	0.31
30/06/2010 20:30	10	750	2.00	142.5	0.32
30/06/2010 20:40	10	760	1.75	144.3	0.32
30/06/2010 20:50	10	770	2.75	147.0	0.33
30/06/2010 21:00	10	780	4.00	151.0	0.34
30/06/2010 21:10	10	790	3.75	154.8	0.35
30/06/2010 21:20	10	800	4.50	159.3	0.36
30/06/2010 21:30	10	810	2.75	162.0	0.36
30/06/2010 21:40	10	820	5.25	167.3	0.37
30/06/2010 21:50	10	830	4.25	171.5	0.38
30/06/2010 21:30	10		3.00		0.39
		840		174.5	
30/06/2010 22:10	10	850 860	2.25	176.8	0.40
30/06/2010 22:20	10		2.25	179.0	0.40
30/06/2010 22:30		870	2.75	181.8	0.41
30/06/2010 22:40	10	880	3.25	185.0	0.4
30/06/2010 22:50	10	890	2.75	187.8	0.42
30/06/2010 23:00	10	900	3.25	191.0	0.43
30/06/2010 23:10	10	910	3.00	194.0	0.43
30/06/2010 23:20	10	920	2.50	196.5	0.44
30/06/2010 23:30	10	930	2.50	199.0	0.43
30/06/2010 23:40	10	940	4.00	203.0	0.43
30/06/2010 23:50	10	950	4.00	207.0	0.46
01/07/2010 00:00	10	960	3.25	210.3	0.47
01/07/2010 00:10	10	970	6.00	216.3	0.48
01/07/2010 00:20	10	980	5.50	221.8	0.50
01/07/2010 00:30	10	990	8.50	230.3	0.53
01/07/2010 00:40	10	1000	6.75	237.0	0.53
01/07/2010 00:50	10	1010	3.00	240.0	0.5
01/07/2010 01:00	10	1020	4.00	244.0	0.5
01/07/2010 01:10	10	1030	3.50	247.5	0.5
01/07/2010 01:20	10	1040	3.50	251.0	0.5
01/07/2010 01:30	10	1050	4.50	255.5	0.5
01/07/2010 01:40	10	1060	6.00	261.5	0.5
01/07/2010 01:50	10	1070	6.75	268.3	0.6
01/07/2010 02:00	10	1080	7.00	275.3	0.6
01/07/2010 02:10	10	1090	6.25	281.5	0.6
01/07/2010 02:20	10	1100	8.50	290.0	0.6
01/07/2010 02:30	10	1110	7.00	297.0	0.6
	10	1120	7.00	304.0	0.6
01/07/2010 02:40			8.25	312.3	0.7
01/07/2010 02:40 01/07/2010 02:50	10	1130	8.25 8.00	312.3 320.3	
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00	10 10	1130 1140	8.00	320.3	0.7
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10	10 10 10	1130 1140 1150	8.00 6.75	320.3 327.0	0.7 0.7
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10 01/07/2010 03:20	10 10 10 10	1130 1140 1150 1160	8.00 6.75 9.50	320.3 327.0 336.5	0.7 0.7 0.7
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10 01/07/2010 03:20 01/07/2010 03:30	10 10 10 10 10	1130 1140 1150 1160 1170	8.00 6.75 9.50 8.25	320.3 327.0 336.5 344.8	0.7 0.7 0.7 0.7
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10 01/07/2010 03:20 01/07/2010 03:30 01/07/2010 03:40	10 10 10 10 10 10	1130 1140 1150 1160 1170 1180	8.00 6.75 9.50 8.25 7.50	320.3 327.0 336.5 344.8 352.3	0.7 0.7 0.7 0.7 0.7
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10 01/07/2010 03:20 01/07/2010 03:30 01/07/2010 03:40 01/07/2010 03:50	10 10 10 10 10 10	1130 1140 1150 1160 1170 1180 1190	8.00 6.75 9.50 8.25 7.50 7.75	320.3 327.0 336.5 344.8 352.3 360.0	0.7 0.7 0.7 0.7 0.7 0.8
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10 01/07/2010 03:20 01/07/2010 03:30 01/07/2010 03:40 01/07/2010 03:50 01/07/2010 04:00	10 10 10 10 10 10 10	1130 1140 1150 1160 1170 1180 1190	8.00 6.75 9.50 8.25 7.50 7.75	320.3 327.0 336.5 344.8 352.3 360.0 370.0	0.7 0.7 0.7 0.7 0.7 0.8 0.8
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10 01/07/2010 03:20 01/07/2010 03:30 01/07/2010 03:40 01/07/2010 03:50 01/07/2010 04:00 01/07/2010 04:10	10 10 10 10 10 10 10 10	1130 1140 1150 1160 1170 1180 1190 1200	8.00 6.75 9.50 8.25 7.50 7.75 10.00 5.75	320.3 327.0 336.5 344.8 352.3 360.0 370.0 375.8	0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8
01/07/2010 02:40 01/07/2010 02:50 01/07/2010 03:00 01/07/2010 03:10 01/07/2010 03:20 01/07/2010 03:30 01/07/2010 03:40 01/07/2010 03:50 01/07/2010 04:00	10 10 10 10 10 10 10	1130 1140 1150 1160 1170 1180 1190	8.00 6.75 9.50 8.25 7.50 7.75	320.3 327.0 336.5 344.8 352.3 360.0 370.0	0.7 0.7 0.7 0.7 0.7 0.8 0.8

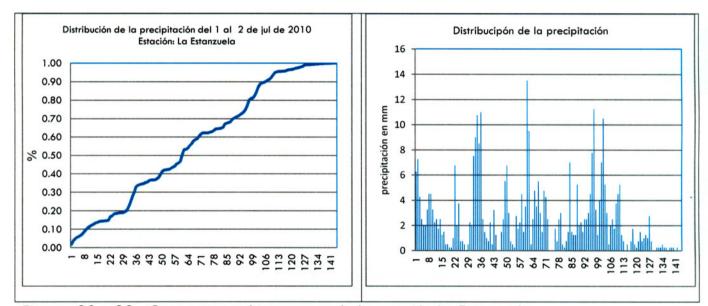
01/07/2010 04:50	10	1250	2.00	389.8	0.87
01/07/2010 05:00	10	1260	2.00	391.8	0.88
01/07/2010 05:10	10	1270	5.00	396.8	0.89
01/07/2010 05:20	10	1280	6.50	403.3	0.90
01/07/2010 05:30	10	1290	4.50	407.8	0.91
01/07/2010 05:40	10	1300	5.25	413.0	0.92
01/07/2010 05:50	10	1310	3.75	416.8	0.93
01/07/2010 06:00	10	1320	2.50	419.3	0.94
01/07/2010 06:10	10	1330	2.25	421.5	0.94
01/07/2010 06:20	10	1340	1.75	423.3	0.95
01/07/2010 06:30	10	1350	1.25	424.5	0.95
01/07/2010 06:40	10	1360	1.75	426.3	0.95
01/07/2010 06:50	10	1370	1.75	428.0	0.96
01/07/2010 07:00	10	1380	1.25	429.3	0.96
01/07/2010 07:10	10	1390	0.75	430.0	0.96
01/07/2010 07:20	10	1400	1.25	431.3	0.97
01/07/2010 07:30	10	1410	1.50	432.8	0.97
01/07/2010 07:40	10	1420	2.00	434.8	0.97
01/07/2010 07:50	10	1430	6.00	440.8	0.99
01/07/2010 08:00	10	1440	5.75	446.5	1.00

Tabla 22.- Valores de precipitación pluvial cada 10 minutos de la estación La Estanzuela del 30 de junio al 1 de julio de 2010.

Figuras 36 y 37.- Curva masa y hietograma de la estación La Estanzuela

Estación La Estanzuela

fecha	tiempo (min)	tiempo Acum.(min)	Precipitación (mm)	Precipitación acumulada (mm)	Distribución de la precipitación
01/07/2010 08:10	10	10	6.25	6.3	0.02
01/07/2010 08:20	10	20	7.25	13.5	0.04
01/07/2010 08:30	10	30	4.25	17.8	0.05
01/07/2010 08:40	10	40	2.50	20.3	0.06
01/07/2010 08:50	10	50	2.00	22.3	0.06
01/07/2010 09:00	10	60	2.00	24.3	0.07
01/07/2010 09:10	10	70	3.25	27.5	0.08
01/07/2010 09:20	10	80	4.50	32.0	0.09
01/07/2010 09:30	10	90	4.50	36.5	0.10
01/07/2010 09:40	10	100	3.25	39.8	0.11
01/07/2010 09:50	10	110	2.25	42.0	0.12
01/07/2010 10:00	10	120	2.50	44.5	0.12
01/07/2010 10:10	10	130	1.75	46.3	0.13
01/07/2010 10:20	10	140	2.50	48.8	0.13
01/07/2010 10:30	10	150	1.25	50.0	0.14
01/07/2010 10:40	10	160	1.50	51.5	0.14
01/07/2010 10:50	10	170	0.50	52.0	0.14
01/07/2010 11:00	10	180	0.50	52.5	0.14
01/07/2010 11:10	10	190	0.25	52.8	0.15
01/07/2010 11:20	10	200	0.25	53.0	0.15
01/07/2010 11:30	10	210	1.00	54.0	0.15
01/07/2010 11:40	10	220	6.75	60.8	0.17
01/07/2010 11:50	10	230	2.00	62.8	0.17
01/07/2010 12:00	10	240	3.75	66.5	0.18
01/07/2010 12:10	10	250	0.75	67.3	0.19
01/07/2010 12:20	10	260	0.75	68.0	0.19
01/07/2010 12:30	10	270	0.50	68.5	0.19
01/07/2010 12:40	10	280	0.00	68.5	0.19
01/07/2010 12:50	10	290	0.50	69.0	0.19
01/07/2010 13:00	10	300	2.25	71.3	0.20
01/07/2010 13:10	10	310 320	2.00	73.3	0.20 0.22
01/07/2010 13:20	10	330	7.50 9.00	80.8 89.8	0.25
01/07/2010 13:30	10	340	10.75	100.5	0.28
01/07/2010 13:50	10	350	8.50	100.5	0.30
01/07/2010 13:30	10	360	11.00	120.0	0.33
01/07/2010 14:10	10	370	2.50	122.5	0.34
01/07/2010 14:20	10	380	1.50	124.0	0.34
01/07/2010 14:30	10	390	1.00	125.0	0.34
01/07/2010 14:40	10	400	0.75	125.8	0.35
01/07/2010 14:50	10	410	2.25	128.0	0.35
01/07/2010 15:00	10	420	0.50	128.5	0.35
01/07/2010 15:10	10	430	3.25	131.8	0.36
01/07/2010 15:20	10	440	1.25	133.0	0.37
01/07/2010 15:30	10	450	0.00	133.0	0.37
01/07/2010 15:40	10	460	0.00	133.0	0.37
01/07/2010 15:50	10	470	1.50	134.5	0.37
01/07/2010 16:00	10	480	2.50	137.0	0.38
01/07/2010 16:10	10	490	5.50	142.5	0.39
01/07/2010 16:20	10	500	6.75	149.3	0.41
01/07/2010 16:30	10	510	3.00	152.3	0.42
01/07/2010 16:40	10	520	0.75	153.0	0.42
01/07/2010 16:50	10	530	0.50	153.5	0.42
01/07/2010 17:00	10	540	0.25	153.8	0.42
01/07/2010 17:10	10	550	2.75	156.5	0.43
01/07/2010 17:20	10	560	1.75	158.3	0.44
01/07/2010 17:30	10	570	2.25	160.5	0.44
01/07/2010 17:40	10	580	4.50	165.0	0.45
01/07/2010 17:50	10	590	1.50	166.5	0.46
01/07/2010 18:00	10	600	3.50	170.0	0.47



01/07/2010 18:10	10	610	13.50	183.5	0.5
01/07/2010 18:20	10	620	9.50	193.0	0.53
01/07/2010 18:30	10	630	0.50	193.5	0.5
01/07/2010 18:40	10	640	2.50	196.0	0.54
01/07/2010 18:50	10	650	4.75	200.8	0.5
01/07/2010 19:00	10	660	3.50	204.3	0.5
01/07/2010 19:10	10	670	5.50	209.8	0.5
01/07/2010 19:20	10	680	3.00	212.8	0.5
01/07/2010 19:30	10	690	1.50	214.3	0.5
01/07/2010 19:40	10	700	4.75	219.0	0.6
01/07/2010 19:50	10	710	4.25	223.3	0.6
01/07/2010 20:00	10	720	2.50	225.8	0.6
01/07/2010 20:10	10	730	0.00	225.8	0.6
01/07/2010 20:20	10	740	0.00	225.8	0.6
01/07/2010 20:30	10	750	0.00	225.8	0.6
01/07/2010 20:40	10	760	1.75	227.5	0.6
01/07/2010 20:50	10	770	0.75	228.3	0.6
01/07/2010 21:00	10	780	2.50	230.8	0.6
01/07/2010 21:10	10	790	3.00	233.8	0.6
01/07/2010 21:20	10	800	0.50	234.3	0.6
01/07/2010 21:30	10	810	0.25	234.5	0.6
01/07/2010 21:40	10	820	0.75	235.3	0.6
01/07/2010 21:50	10	830	1.50	236.8	0.6
01/07/2010 22:00	10	840	7.00	243.8	0.6
01/07/2010 22:10	10	850	1.50	245.3	0.6
01/07/2010 22:20	10	860	1.25	246.5	0.6
01/07/2010 22:30	10	870	1.25	247.8	0.6
01/07/2010 22:40	10	880	5.25	253.0	0.7
01/07/2010 22:50	10	890	2.00	255.0	0.7
01/07/2010 23:00	10	900	2.25	257.3	0.7
01/07/2010 23:10	10	910	1.50	258.8	0.7
01/07/2010 23:20	10	920	2.50	261.3	0.7
01/07/2010 23:30	10	930	2.50	263.8	0.7
01/07/2010 23:40	10	940	3.00	266.8	0.7
01/07/2010 23:50	10	950	4.50	271.3	0.7
02/07/2010 00:00	10	960	7.75	279.0	0.7
02/07/2010 00:10	10	970	11.25	290.3	0.8
02/07/2010 00:20	10	980	3.25	293.5	0.8
02/07/2010 00:30	10	990	1.25	294.8	0.6
02/07/2010 00:40	10	1000	4.00	298.8	0.6
02/07/2010 00:50	10	1010	7.00	305.8	0.8
02/07/2010 01:00	10	1020	10.50	316.3	0.8
02/07/2010 01:10	10	1030	5.25	321.5	0.8
02/07/2010 01:20	10	1040	3.00	324.5	0.8
02/07/2010 01:30	10	1050	0.50	325.0	0.9
02/07/2010 01:40	10	1060	2.00	327.0	0.9
02/07/2010 01:50	10	1070	2.50	329.5	0.9
02/07/2010 02:00	10	1080	1.75	331.3	0.9
02/07/2010 02:10	10	1090	3.75	335.0	0.9
02/07/2010 02:20	10	1100	4.50	339.5	0.9
02/07/2010 02:30	10	1110	5.25	344.8	0.9
02/07/2010 02:40	10	1120	1.25	346.0	0.9
02/07/2010 02:50	10	1130	0.75	346.8	0.9
02/07/2010 03:00	10	1140	0.00	346.8	0.9
02/07/2010 03:10	10	1150	0.50	347.3	0.9
02/07/2010 03:20	10	1160	0.00	347.3	0.9
02/07/2010 03:30	10	1170	0.75	348.0	0.9
02/07/2010 03:40	10	1180	1.75	349.8	0.9
02/07/2010 03:50	10	1190	0.50	350.3	0.9
02/07/2010 04:00	10	1200	0.25	350.5	0.9
02/07/2010 04:10	10	1210	0.75	351.3	0.9
02/07/2010 04:20	10	1220	1.50	352.8	0.9
02/07/2010 04:30	10	1230	0.75	353.5	0.9
02/07/2010 04:40 02/07/2010 04:50	10	1240	1.00	354.5	0.9

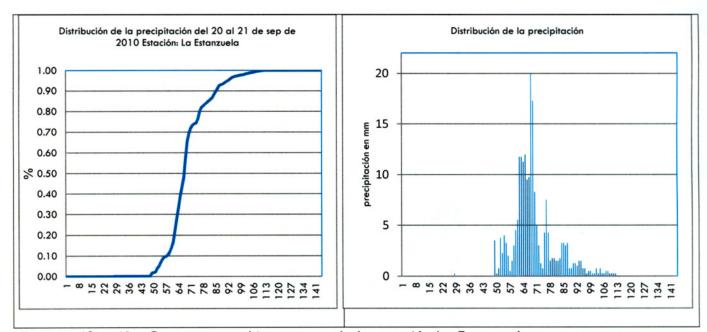
02/07/2010 05:00	10	1260	1.00	356.8	0.98
02/07/2010 05:10	10	1270	2.75	359.5	0.99
02/07/2010 05:20	10	1280	0.75	360.3	0.99
02/07/2010 05:30	10	1290	0.00	360.3	0.99
02/07/2010 05:40	10	1300	0.00	360.3	0.99
02/07/2010 05:50	10	1310	0.25	360.5	0.99
02/07/2010 06:00	10	1320	0.25	360.8	0.99
02/07/2010 06:10	10	1330	0.25	361.0	0.99
02/07/2010 06:20	10	1340	0.50	361.5	1.00
02/07/2010 06:30	10	1350	0.25	361.8	1.00
02/07/2010 06:40	10	1360	0.25	362.0	1.00
02/07/2010 06:50	10	1370	0.00	362.0	1.00
02/07/2010 07:00	10	1380	0.25	362.3	1.00
02/07/2010 07:10	10	1390	0.25	362.5	1.00
02/07/2010 07:20	10	1400	0.25	362.8	1.00
02/07/2010 07:30	10	1410	0.00	362.8	1.00
02/07/2010 07:40	10	1420	0.25	363.0	1.00
02/07/2010 07:50	10	1430	0.00	363.0	1.00
02/07/2010 08:00	10	1440	0.00	363.0	1.00

Tabla 23.- Valores de precipitación pluvial cada 10 minutos de la estación La Estanzuela, del 1 al 2 de julio de 2010.

Figuras 38 y 39.- Curva masa y hietograma de la estación La Estanzuela del 1 y 2 de julio de 2010.

Estación La Estanzuela

fecha	tiempo (min)	tiempo Acum.(min)	Precipitación (mm)	Precipitación acumulada (mm)	Distribución de la precipitación
20/09/2010 08:10	10	20	0.00	0.00	0.00
20/09/2010 08:20	10	30	0.00	0.00	0.00
20/09/2010 08:30	10	40	0.00	0.00	0.00
20/09/2010 08:40	10	50	0.00	0.00	0.00
20/09/2010 08:50	10	60	0.00	0.00	0.00
20/09/2010 09:00	10	70	0.00	0.00	0.00
20/09/2010 09:10	10	80	0.00	0.00	0.00
20/09/2010 09:20	10	90	0.00	0.00	0.00
20/09/2010 09:30	10	100	0.00	0.00	0.00
20/09/2010 09:40	10	110	0.00	0.00	0.00
20/09/2010 09:50	10	120	0.00	0.00	0.00
20/09/2010 10:00	10	130	0.00	0.00	0.00
20/09/2010 10:10	10	140	0.00	0.00	0.00
20/09/2010 10:20	10	150	0.00	0.00	0.00
20/09/2010 10:30	10	160	0.00	0.00	0.00
20/09/2010 10:40	10	170	0.00	0.00	0.00
20/09/2010 10:50	10	180	0.00	0.00	0.00
20/09/2010 11:00	10	190	0.00	0.00	0.00
20/09/2010 11:10	10	200	0.00	0.00	0.00
20/09/2010 11:20	10	210	0.00	0.00	0.00
20/09/2010 11:30	10	220	0.00	0.00	0.00
20/09/2010 11:40	10	230	0.00	0.00	0.00
20/09/2010 11:50	10	240	0.00	0.00	0.00
20/09/2010 12:00	10	250	0.00	0.00	0.00
20/09/2010 12:10	10	260	0.00	0.00	0.00
20/09/2010 12:20	10	270	0.00	0.00	0.00
20/09/2010 12:30	10	280	0.00	0.00	0.00
20/09/2010 12:40	10	290	0.25	0.25	0.00
20/09/2010 12:50	10	300	0.00	0.25	0.00
20/09/2010 13:00	10	310	0.00	0.25	0.00
20/09/2010 13:10	10	320	0.00	0.25	0.00
20/09/2010 13:20	10	330	0.00	0.25	0.00
20/09/2010 13:30	10	340	0.00	0.25	0.00
20/09/2010 13:40	10	350	0.00	0.25	0.00
20/09/2010 13:50	10	360	0.00	0.25	0.00
20/09/2010 14:00	10	370	0.00	0.25	0.00
20/09/2010 14:10	10	380	0.00	0.25	0.00
20/09/2010 14:20	10	390	0.00	0.25	0.00
20/09/2010 14:30	10	400	0.00	0.25	0.00
20/09/2010 14:40	10	410	0.00	0.25	0.00
20/09/2010 14:50	10	420	0.00	0.25	0.00
20/09/2010 15:00	10	430	0.00	0.25	0.00
20/09/2010 15:10	10	440	0.00	0.25	0.00
20/09/2010 15:20	10	450	0.00	0.25	0.00
20/09/2010 15:30	10	460	0.00	0.25	0.00
20/09/2010 15:40	10	470	0.00	0.25	0.00
20/09/2010 15:50	10	480	0.00	0.25	0.00
20/09/2010 16:00	10	490	0.00	0.25	0.00
20/09/2010 16:10	10	500	3.50	3.75	0.02
20/09/2010 16:20	10	510	0.25	4.00	0.02
20/09/2010 16:30	10	520	0.75	4.75	0.02
20/09/2010 16:30	10	530	3.75	8.50	0.02
20/09/2010 16:40	10	540	2.25	10.75	0.04
20/09/2010 17:00	10	550	4.00	14.75	0.03
20/09/2010 17:00	10	560	3.25	18.00	0.07
			2.00	20.00	0.10
20/09/2010 17:20	10	570		20.50	0.10
20/09/2010 17:30	10	580	0.50 1.50	20.50	0.10
20/09/2010 17:40		590			
20/09/2010 17:50	10	600	3.00	25.00	0.12



20/09/2010 18:00	10	610	4.50	29.50	0.14
20/09/2010 18:10	10	620	5.50	35.00	0.17
20/09/2010 18:20	10	630	11.75	46.75	0.22
20/09/2010 18:30	10	640	11.75	58.50	0.28
20/09/2010 18:40	10	650	11.25	69.75	0.33
20/09/2010 18:50	10	660	12.00	81.75	0.39
20/09/2010 19:00	10	670	9.50	91.25	0.43
20/09/2010 19:10	10	680	9.75	101.00	0.48
20/09/2010 19:20	10	690	20.00	121.00	0.57
20/09/2010 19:30	10	700	17.25	138.25	0.66
20/09/2010 19:40	10	710	8.25	146.50	0.70
20/09/2010 19:50	10	720	5.00	151.50	0.72
20/09/2010 20:00	10	730	3.00	154.50	0.73
20/09/2010 20:10	10	740	1.25	155.75	0.74
20/09/2010 20:10	10	750	0.75	156.50	0.74
20/09/2010 20:30	10	760	4.25	160.75	0.76
20/09/2010 20:40	10	770	7.50	168.25	0.80
20/09/2010 20:50	10	780	4.25	172.50	0.82
20/09/2010 20:30	10	790	1.50	174.00	0.82
20/09/2010 21:10	10	800	1.75	175.75	0.83
20/09/2010 21:10	10	810	1.75	177.50	0.84
20/09/2010 21:20	10	820	1.50	179.00	
					0.85
20/09/2010 21:40	10	830	1.50	180.50	0.86
20/09/2010 21:50	10	840	1.75	182.25	0.87
20/09/2010 22:00	10	850	3.25	185.50	0.88
20/09/2010 22:10	10	860	3.25	188.75	0.90
20/09/2010 22:20	10	870	3.00	191.75	0.91
20/09/2010 22:30	10	880	3.25	195.00	0.93
20/09/2010 22:40	10	890	0.75	195.75	0.93
20/09/2010 22:50	10	900	0.75	196.50	0.93
20/09/2010 23:00	10	910	1.25	197.75	0.94
20/09/2010 23:10	10	920	1.25	199.00	0.95
20/09/2010 23:20	10	930	1.00	200.00	0.95
20/09/2010 23:30	10	940	1.50	201.50	0.96
20/09/2010 23:40	10	950	1.50	203.00	0.96
20/09/2010 23:50	10	960	0.75	203.75	0.97
21/09/2010 00:00	10	970	0.75	204.50	0.97
21/09/2010 00:10	10	980	0.25	204.75	0.97
21/09/2010 00:20	10	990	0.50	205.25	0.98
21/09/2010 00:30	10	1000	0.50	205.75	0.98
21/09/2010 00:40	10	1010	0.25	206.00	0.98
21/09/2010 00:50	10	1020	0.25	206.25	0.98
21/09/2010 01:00	10	1030	0.75	207.00	0.98
21/09/2010 01:10	10	1040	0.25	207.25	0.98
21/09/2010 01:20	10	1050	0.75	208.00	0.99
21/09/2010 01:30	10	1060	0.25	208.25	0.99
21/09/2010 01:40	10	1070	0.25	208.50	0.99
21/09/2010 01:50	10	1080	0.50	209.00	0.99
21/09/2010 02:00	10	1090	0.50	209.50	1.00
21/09/2010 02:10	10	1100	0.25	209.75	1.00
21/09/2010 02:20	10	1110	0.25	210.00	1.00
21/09/2010 02:30	10	1120	0.25	210.25	1.00
21/09/2010 02:40	10	1130	0.25	210.50	1.00
21/09/2010 02:50	10	1140	0.00	210.50	1.0
21/09/2010 03:00	10	1150	0.00	210.50	1.0
21/09/2010 03:10	10	1160	0.00	210.50	1.0
21/09/2010 03:20	10	1170	0.00	210.50	1.0
21/09/2010 03:30	10	1180	0.00	210.50	1.0
21/09/2010 03:40	10	1190	0.00	210.50	1.0
21/09/2010 03:50	10	1200	0.00	210.50	1.0
//	10	1210	0.00	210.50	1.0
21/09/2010 04:00			0.00	2.0.00	
21/09/2010 04:00			0.00	210 50	1.00
21/09/2010 04:10	10	1220	0.00	210.50	
			0.00 0.00 0.00	210.50 210.50 210.50	1.00

1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Tabla 24.- Valores de precipitación pluvial cada 10 minutos de la estación La Estanzuela, del 20 al 21 de septiembre de 2010.

Figuras 40 y 41.- Curva masa y hietograma de la estación La Estanzuela, del 20 al 21 de septiembre de 2010.

3.4.- Determinación de la avenida de diseño.

Una vez que se han determinado las características fisiográficas de la cuenca, de haber obtenido las tormentas de diseño para diferentes períodos de retorno, de haber obtenido las lluvias de las estaciones automáticas para determinar la distribución temporal de la lluvia, se procede a determinar las avenidas de diseño para los períodos de retorno de 50, 500, 1000 y 10 000 años, con el objetivo de realizar el tránsito de estas avenidas en el vaso y de esta forma poder hacer la revisión hidrológica de la presa La Boca, por lo que mediante el uso del programa HEC-HMS se realizaron las corridas necesarias para generar los hidrogramas para cuatro tormentas seleccionadas sin embargo, los primeros resultados que se obtuvieron con los datos duros se produjeron hidrogramas diferentes por lo que fue necesario hacer la calibración del modelo lluvia-escurrimiento.

3.4.1.- Construcción del Modelo Lluvia-Escurrimiento en el programa, HEC-HMS.

Breve descripción del HEC-HMS

El programa HEC-HMS es un programa complejo que calcula el hidrograma producido por una cuenca si se le asignan los datos físicos de la cuenca, datos de precipitación, etc.

lnicia con la separación de la lluvia neta, es decir calcula que parte de la precipitación caída va a generar escurrimiento directo, calcula el escurrimiento directo producido por la precipitación neta, calcula la evolución del escurrimiento base a lo largo el tiempo y calcula cómo evoluciona el hidrograma a medida que transcurre a lo largo de un cauce o a través de un embalse.

Los componentes básicos del programa es el Modelo de Cuenca (Basin Model), en este paso se introducen las distinta subcuencas de un proyecto así como sus características.

El segundo componente es el Modelo Meteorológico (Meteorological Model), a cada modelo meteorológico se le asigna uno o más pluviómetros, se pueden utilizar precipitaciones reales o teóricas, tormentas de diseño. Los pluviómetros se crean previamente y se introducen sus datos en el Time-Series Data Manager). Si se utilizan varios pluviómetros habrá que indicar sus coordenadas para que el HMS haga la media para cada subcuenca y si ya se ha evaluado este factor previamente para cada subcuenca, se le asigna a un pluviómetro. El HMS esas precipitaciones a toda la superficie de la subcuenca. Se pueden utilizar varios modelos meteorológicos con el mismo modelo de cuenca, para determinar los caudales que se producirían por diferentes precipitaciones sobre la misma cuenca.

Especificaciones de Control (Control Specifications), en esta fase se le indica al programa cuando debe empezar y cuando debe terminar el cálculo, así como el incremento del tiempo.

Ejecución y obtención de resultados, en esta fase se realizan los cálculos correspondientes mediante la combinación de diferentes modelos de cuenca, modelos meteorológicos y especificaciones de control

3.4.1.1.- Construcción del Modelo Lluvia-Escurrimiento para la presa La Boca.

El primer componente del programa para el diseño conceptual es el de Modelo en donde se crean las subcuencas necesarias para el análisis y para este caso se divide en las subcuencas La Chueca, El Puerco y Escamilla así como los componentes denominados de entrada y salidas de la cuenca, en cada subcuenca, se asignan los valores previamente obtenidos como son el Número de Escurrimiento, el tiempo de concentración y el área de cada subcuenca, el objetivo del componente antitránsito es para poder concentrar los hidrogramas individuales de cada subcuenca y en el componente Salidas de la cueca se podrán comparar los hidrogramas de entrada con los hidrogramas de salida.

El segundo componente necesario es el Modelo Meteorológico (Meteorologic Model) en donde se asignan las precipitaciones reales, teóricas o de diseño, estos datos deben introducirse previamente en el componente Times-Series Data.

En cada modelo meteorológico creado se debe introducir las lluvias máximas en 24 horas (precipitation gages) ya sean las registradas si se está en el proceso de calibración del modelo o los valores de las lluvias máximas en 24 horas estimadas de acuerdo a la función de distribución de probabilidad en este caso Doble Gumbel.

Así mismo, en cada modelo meteorológico en forma automática se crean las tres subcuencas previamente asignadas en el modelo de cuenca y en cada una de las subcuencas se asignan los Gage Weights, es en este momento en donde en donde se asigna el área de influencia o pesos de Thiessen de las estaciones tanto las convencionales como las automáticas.

El tercer componente es el Control de Especificaciones (Control Specifications) en este sitio se establece el inicio y terminación del cálculo de los hidrogramas así como el intervalo del cálculo de los mismos.

El cuarto componente es el Times-Series Data, en este paso es donde se introducen los valores de la distribución temporal de las lluvias de las estaciones automáticas utilizadas para realizar la distribución temporal de las lluvias máximas en 24 horas de las estaciones convencionales.

El quinto componente denominado Paired Data es el campo en donde se introducen los pares de datos que no tienen que ver en el tiempo, en este caso se seleccionan las funciones Elevation-Storage-Functions en donde se introduce la tabla de elevaciones-almacenamientos de la presa La Boca previamente transformados los valores del volumen de millones de metros cúbicos a miles de metros cúbicos; también se selecciona la componente de Elevation-Area-Functions, en donde se introduce la tabla de elevaciones-área de embalse previamente transformada de hectáreas a metros cuadrados y finalmente se selecciona la componente Elevation-Discharge-Functions en donde se introducen las diferentes curvas de descarga del vertedor en donde se van a seleccionar las políticas de operación que mejor se adapten. Estos componentes del programa se muestran en la figura 42.

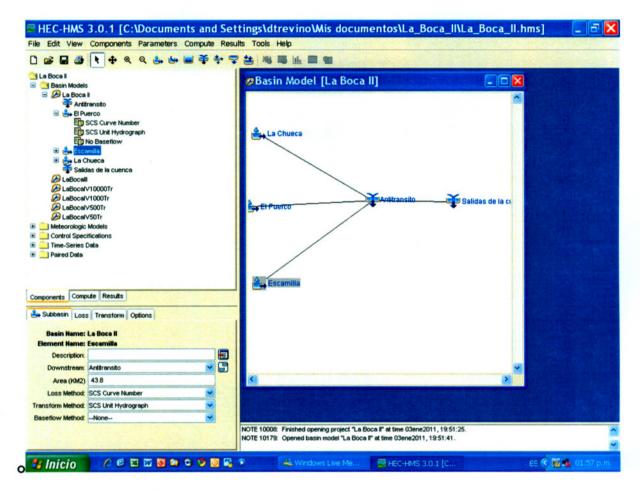


Figura 42.- Componentes del proyecto La Boca en el programa HEC-HMS.

3.4.2.-Calibración del Modelo Lluvia-Escurrimiento.

Para realizar la calibración del modelo lluvia-escurrimiento propuesto para determinar la revisión hidrológica de la presa La Boca, se pensó en comparar los hidrogramas que resultaban de la modelación de algunas tormentas contra los hidrogramas obtenidos en el vaso de la presa La Boca para estas mismas fechas, estos últimos fueron obtenidos de cada una de las tormentas mediante la utilización del método antifuncionamiento del vaso o tránsito inverso o mejor conocido como antitránsito, método aceptado para calcular las entradas a las presas por la Gerencia de Aguas Superficiales e Ingeniería de Ríos de la Comisión Nacional del Agua.

La estimación de los caudales de entrada al vaso de la presa utiliza la técnica tradicional para el cálculo del antitránsito. El resultado de esa técnica tradicional exhibe oscilaciones alrededor de la solución, las cuales son producto de una inestabilidad del método numérico utilizado (Aldama, Álvaro A y Aguilar, E. 1997). Esa inestabilidad históricamente ha impedido que se acepten plenamente los valores obtenidos de las avenidas de ingreso calculadas con tránsitos inversos. Es frecuente que alrededor del cálculo tradicional, se efectúen algunas correcciones con las que se pretende evitar esas oscilaciones y consecuentemente de acuerdo con el técnico encargado de hacer cada corrección, se obtiene un dato que no necesariamente es el mismo que obtienen otros especialistas que realizan el mismo cálculo.

Con la aplicación del antitránsito, los hidrogramas de ingreso al vaso de la presa se calculan con los registros de operación de la presa correspondientes a la elevación de la superficie libre del agua en el vaso, del empleo de las relaciones elevaciones-capacidades y elevaciones-descargas y el registro de operación de las obras de toma y de excedencias.

Los antitránsitos se llevan a cabo resolviendo numéricamente la ecuación de continuidad en forma inversa, calculando el gasto de ingreso al vaso a partir del gasto de egreso y de la tasa de cambio del almacenamiento (Aldama y Aguilar, 1996).

Tomando en consideración las notaciones de los párrafos anteriores, en la Dirección Técnica del Organismo de Cuenca Río Bravo de la Comisión Nacional del Agua, ha utilizado esta técnica para poder realizar las descargas del vertedor de la presa La Boca basado en los resultados obtenidos de los antitránsitos, si bien es cierto que este método no refleja con una certeza del 100% el volumen y gastos picos que están ingresando al vaso durante la presencia de una tormenta severa, si produce resultados confiables con los cuales se ha venido operando el sistema de compuertas del vertedor de esta presa con resultados muy buenos, es decir en todos los eventos que se han presentado desde 2002 a la fecha, se ha hecho un manejo excelente de las descargas del vertedor basado en el manejo de los resultados del antitránsito para determinar las entradas que ocurren al vaso durante cada tormenta.

Los primeros resultados obtenidos mostraban hidrogramas muy grandes comparados con los hidrogramas obtenidos mediante el transito inverso en el vaso en diferentes tormentas. Los hidrogramas resultantes de la utilización del modelo lluvia-escurrimiento, fueron obtenidos con los datos calculados de los Números de Escurrimiento, la pendiente media del cauce, tiempo de

concentración calculado de acuerdo a Kirpich, el peso de cada estación en cada subcuenca, la distribución temporal de la precipitación con los pluviómetros automáticos. figuras 43, 44, 45 y 46.

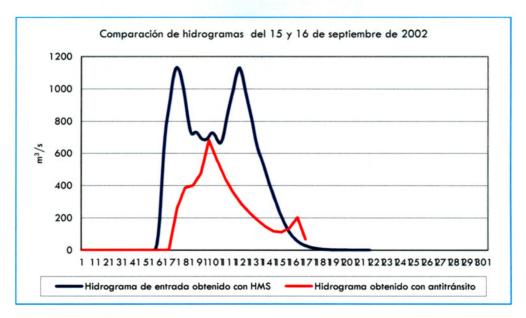


Figura 43.-Comparación de hidrogramas del 15 al 16 de septiembre de 2002.

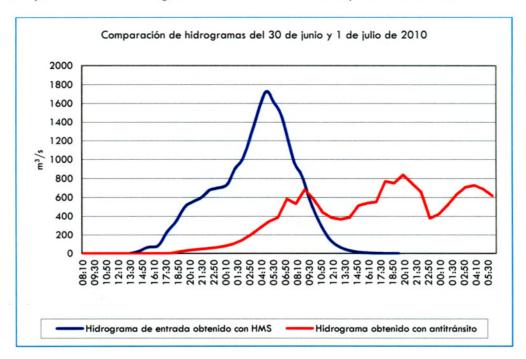


Figura 44.- Comparación de hidrogramas del 30 de junio y 1 de julio de 2010

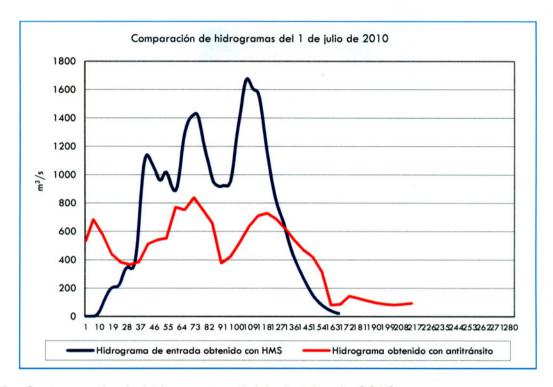


Figura 45.- Comparación de hidrogramas del 1 de julio de 2010

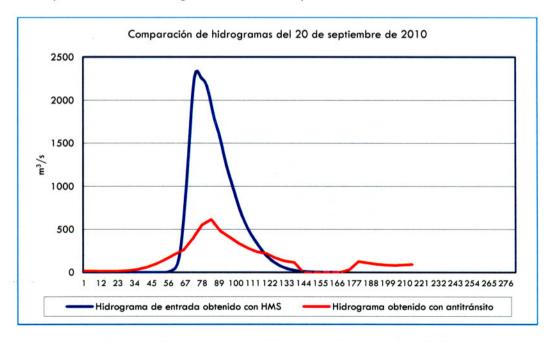


Figura 46.- Comparación de hidrogramas del 20 de septiembre de 2010

En virtud de que los resultados obtenidos mostraban que los hidrogramas modelados en el programa HEC-HMS eran muy grandes todavía al compararlos con los obtenidos en el vaso por antitránsito, se llevó a cabo análisis exhaustivo de la información utilizada para la construcción del modelo lluvia-escurrimiento en el programa HEC-HMS, de tal manera que se decidió hacer una reducción de la precipitación máxima en 24 horas a los valores de las estaciones climatológicas utilizadas para los cuatro eventos y en virtud de que en la cuenca de la presa La Boca no se cuenta con estaciones automáticas que permitan hacer una mejor distribución temporal de las lluvias máximas en 24 horas utilizadas en cada evento modelado y de que solo existen tres estaciones climatológicas convencionales, se utilizó la información de la distribución temporal de la lluvia de los registros de las estaciones automáticas Protección Civil y La Estanzuela, estaciones del Sistema de Alertamiento Hidrometeorológico de Monterrey por su cercanía con la cuenca en estudio, la primera se ubica en las instalaciones de la Dirección de Protección civil del Estado y la segunda en la colonia La Estanzuela ambas en el municipio de Monterrey, todo esto con el objetivo de reducir la precipitación media que el modelo asume al tener pocos valores de precipitación máxima en 24 horas; si existiera una mayor cantidad de estaciones, tal vez no sería necesario aplicar reducción alguna porque los valores que se tendrían serían muy cercanos a la realidad.

De las tres estaciones que se utilizaron para obtener los valores de lluvias máximas en 24 horas para calcular las tormentas de diseño para diferentes períodos de retorno, se obtuvieron los valores de lluvia máxima en 24 horas medida en pluviómetros totalizadores en los cuales se mide todos los días a las 8:00 horas, de tal manera que los valores que se muestran en la tabla 25, corresponden al día de ocurrencia.

Lluvias en 24 horas utilizadas para la calibración del modelo					
	Lluvia-	Escurrimiento			
	15 sep 2002	30 jun 2010	1 jul 2010	20 sep 2010	
La Boca	233.9	255.7	389.0	273.0	
El Cerrito	220.0	313.0	315.0	180.0	
Laguna de Sánchez	145.0	310.0	305.0	22.0	

Tabla 25.- Lluvias máximas en 24 horas de las estaciones La Boca, El Cerrito y Laguna de Sánchez.

En la Comisión Nacional del Agua se tiene establecido que en las estaciones climatológicas convencionales los valores de la lluvia se miden de las 8:00 horas de un día, a las 8:00 horas del día siguiente y se ha determinado que el día de registro corresponde a las 8:00 horas del día en que se tomen los datos en la estación y el día de ocurrencia a la fecha anterior.

En virtud de que solo hay tres estaciones en la cuenca de la presa La Boca, es necesario aplicar factores de reducción de la lluvia por área, ya que cuando se dispone de una sola estación por cada subcuenca en el programa HEC-HMS se sobrestima la precipitación media ya que supone que llueve la misma cantidad en toda la cuenca. De acuerdo a la literatura, estos factores de reducción se determinaron por medio de la calibración.

En la figura 47 se muestra una recomendación de factores de reducción que dependen del área de la cuenca y de la duración de la tormenta. (HEC-HMS, Technical Reference Manual, 2000).

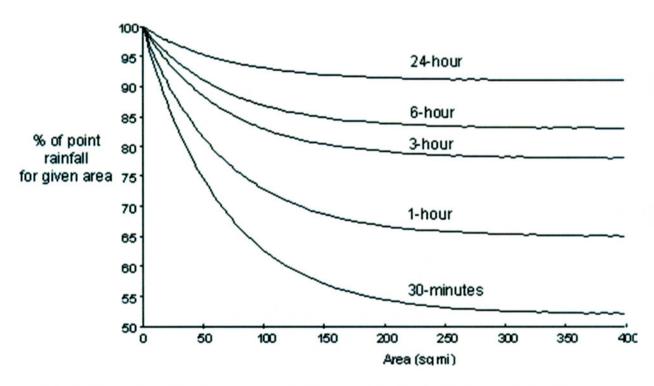


Figura 47.- Factores de reducción recomendados para el cálculo de la precipitación media en una cuenca. (HEC-HMS, Technical Reference Manual, 2000)

Tomando en cuenta que el tamaño de la cuenca de la presa La Boca es de 268.28 km2 que equivale a 103.59 millas cuadradas, así como la duración de las tormentas utilizados para la calibración del modelo, datos que se muestran en la tabla 26, se ingresa a la gráfica de la figura 38 para obtener los factores de reducción para cada una de las tormentas utilizadas.

Con los porcentajes de reducción obtenidos para cada tormenta se procedió a realizar el ajuste de las lluvias máximas en 24 horas utilizadas para la calibración del Modelo lluvia-escurrimiento, los valores de las lluvias máximas reducidas así como el porcentaje de reducción se muestran en la tabla 27.

Subcuenca	Nombre	Área (km²)	Millas ²	T1 duración hrs. 15 Sep 2002	T2 duración hrs. 30 jun 2010	T3 duración hrs. 1 jul 2010	T4 duración hrs. 20 Sep 2010
1	La Chueca	187.66	72.46				
2	Escamilla	43.83	16.92	15	23	24	11
3	El Puerco	36.79	14.21				
		268.28	103.59				

Tabla 26.- Análisis de la duración de las tormentas para calcular los porcentajes de reducción de la precipitación.

Lluvias máximas en 24 horas reducidas					
	15 sep 2002	30 jun 2010	1 jul 2010	20 sep 2010	
La Boca	212.8	237.8	365.7	237.5	
El Cerrito	200.2	291.1	296.1	156.6	
Laguna de Sánchez	132.0	288.3	286.7	19.1	
Porcentaje de reducción	91%	93%	94%	87%	

Tabla 27.- Lluvias máximas en 24 horas reducidas y factor de reducción.

Calibración de los tiempos de concentración.

Con los valores obtenidos como tiempo de retraso para cada subcuenca mediante Kirpich, las lluvias reducidas por efecto de área de cuenca, el número de escurrimiento, el área de cada subcuenca, el peso de cada estación en cada subcuenca, la distribución temporal de la precipitación con los pluviómetros automáticos, se realizaron las primeras simulaciones para cada uno de los cuatro eventos, sin embargo, los hidrogramas resultantes seguían siendo muy grandes comparados con los hidrogramas de los antitránsitos, por lo que de acuerdo a recomendaciones de los tutores se procedió a revisar y comparar los tiempos de concentración o retraso para este caso particular.

El procedimiento a seguir fue determinar la diferencia entre el tiempo correspondiente al centroide de cada hietograma y el tiempo pico de cada hidrograma obtenido con antitránsito para cada evento analizado y los resultados se muestran en seguida:

15 de septiembre de 2002

El centroide del hietograma fue a las a las 17:40 horas y el pico del hidrograma a las 00:00 horas, de tal manera que el tiempo de retraso es de 260 minutos, mientras que en la formulación de kirpich el tiempo de retraso para la subcuenca más grande es de 226.40 minutos.

1 de julio de 2010

El centroide del hietograma fue a las a las 3:10 horas y el pico del hidrograma a las 9:00 horas, de tal manera que el tiempo de retraso es de 360 minutos, mientras que en la formulación de kirpich el tiempo de retraso para la subcuenca más grande es de 226.40 minutos.

1 de julio de 2010, segundo evento

El centroide del hietograma fue a las a las 13:50 horas y el pico del hidrograma a las 20:00 horas, de tal manera que el tiempo de retraso es de 370 minutos, mientras que en la formulación de kirpich el tiempo de retraso para la subcuenca más grande es de 226.40 minutos.

20 de septiembre de 2010

El centroide del hietograma fue a las a las 18:00 horas y el pico del hidrograma a las 21:30 horas del 20 de septiembre, de tal manera que el tiempo de retraso es de 210 minutos, mientras que en la formulación de kirpich el tiempo de retraso para la subcuenca más grande es de 226.40 minutos.

Con estos resultados parciales se procedió a determinar ahora los tiempos de retraso entre el pico de cada hietograma y el pico de cada hidrograma modelado con el programa HEC-HMS obteniendo los siguientes resultados:

15 de septiembre de 2002

El centroide del hietograma fue a las a las 17:40 horas y el pico del hidrograma a las 20:50 horas, de tal manera que el tiempo de retraso es de 190 minutos.

1 de julio de 2010

El centroide del hietograma fue a las a las 3:10 horas y el pico del hidrograma a las 5:40 horas, de tal manera que el tiempo de retraso es de 140 minutos.

1 de julio de 2010, segundo evento

El centroide del hietograma fue a las a las 18:10 horas y el pico del hidrograma a las 20:20 horas, de tal manera que el tiempo de retraso es de 130 minutos.

20 de septiembre de 2010

El centroide del hietograma fue a las a las 19:10 horas y el pico del hidrograma a las 21:40 horas del 20 de septiembre, de tal manera que el tiempo de retraso es de 150 minutos.

Con estos resultados se procedió a realizar la corrección de los tiempos de concentración para cada evento de acuerdo al procedimiento siguiente:

Utilizando los tiempos de concentración obtenidos entre el tiempo correspondiente al centroide de cada hietograma y el tiempo al pico de cada hidrograma modelado, se dividieron entre los tiempos de concentración obtenidos mediante Kirpich para cada una de las tres subcuencas obteniendo un factor de corrección para cada subcuenca, los resultados que se muestran en la tabla 28.

15 de septiembre de 2002				
Subcuenca	Tiempo 1/Tiempo 2	Factor de corrección		
La Chueca	190/226.4	0.84		
Escamilla	190/84.91	2.24		
El Puerco	190/101.76	1.87		

1 de julio de 2010				
140/226.4	0.62			
140/84.91	1.65			
140/101.76	1.38			
1 de julio de 2010 segundo e	vento			
130/226.4	0.57			
130/84.91	1.53			
130/101.76	1.28			
20 de septiembre de 2010	0			
150/226.4	0.66			
150/84.91	1.77			
150/101.76	1.47			
	140/226.4 140/84.91 140/101.76 1 de julio de 2010 segundo en 130/226.4 130/84.91 130/101.76 20 de septiembre de 2016 150/226.4 150/84.91			

Tabla 28.- Tiempo 1, tiempo de concentración entre el centroide del hietograma y el pico del hidrograma obtenido por antitránsito; Tiempo 2, tiempo de concentración obtenidos mediante Kirpich.

Con los factores de corrección (Fc.) para cada evento y para cada subcuenca, y los tiempos de concentración (Tc.) obtenidos con la diferencia de los tiempos pico de los hietogramas y los antitránsitos (tiempos reales) se procedió a determinar los tiempos de concentración o retraso ajustados (Tca.) cuyos resultados se muestran en la tabla 29.

15 de septiembre de 2002

Subcuenca	Tc/Fc	Tca.				
La Chueca	260/0.84	309.8				
Escamilla	260/2.24	116.2				
El Puerco	260/1.87	139.3				
1	de julio de 2010					
La Chueca	360/0.62	582.2				
Escamilla	360/1.65	218.3				
El Puerco	360/1.38	261.7				
1 de julio	1 de julio de 2010 segundo evento					
La Chueca	370/0.57	644.4				
Escamilla	370/1.53	241.7				
El Puerco	370/1.28	289.6				
20 de septiembre de 2010						
La Chueca	210/0.66	318.1				
Escamilla	210/1.77	118.6				
El Puerco	210/1.47	142.9				

Tabla 29.-Tiempos de concentración ajustados

3.4.3.- Comprobación de la calibración de las variables de reducción de la precipitación y tiempos de concentración en el programa HEC-HMS.

Con los valores de los tiempos de concentración ajustados y los valores de las lluvias reducidas mediante el factor del tamaño de la cuenca, se realizaron las corridas para cada evento en el programa HEC-HMS con el objetivo de revisar el comportamiento de los hidrogramas modelados y compararlos con los hidrogramas de antitránsito y determinar de esta manera si la calibración es suficiente para proceder a realizar las corridas ahora con las lluvias máximas en 24 proyectadas, los resultados se muestran en las figuras 48, 49, 50, 51, 52, 53, 54 y 55.

Septiembre de 2002

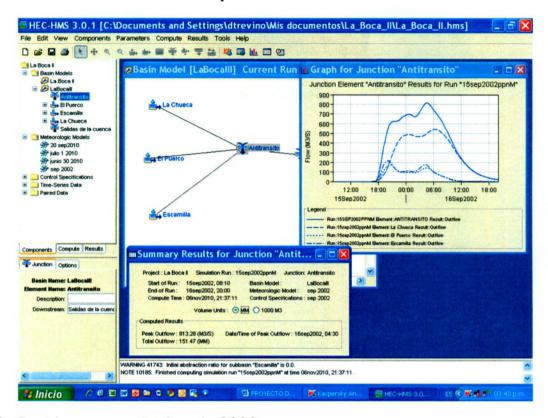


Figura 48.-Corrida para septiembre de 2002.

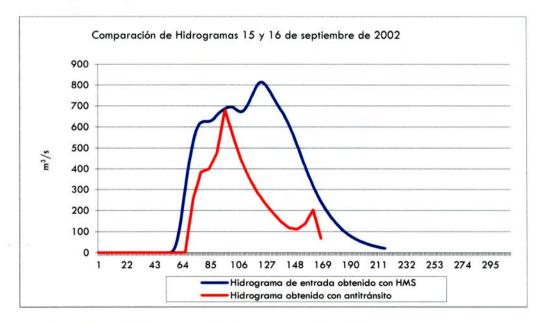


Figura 49.-Comparación de hidrogramas septiembre de 2002

30 de junio de 2010

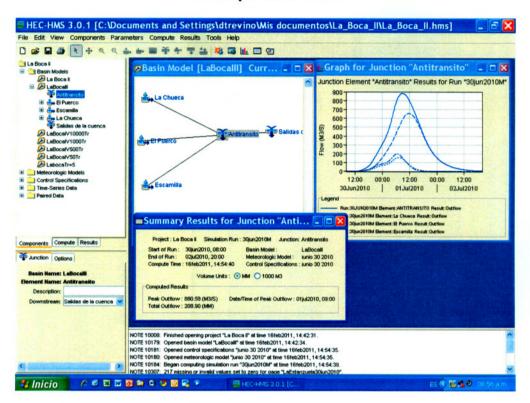


Figura 50.-Corrida para el 30 de junio y 1 de julio d 2010

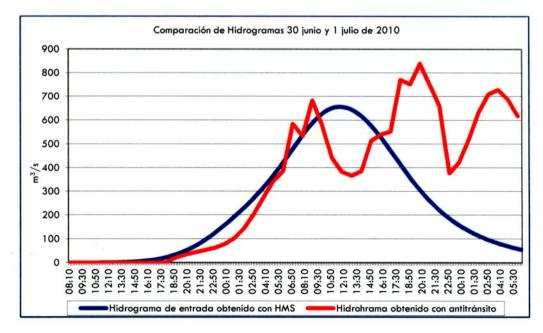


Figura 51.-Comparación de hidrogramas del 30 de junio y 1 de julio de 2010

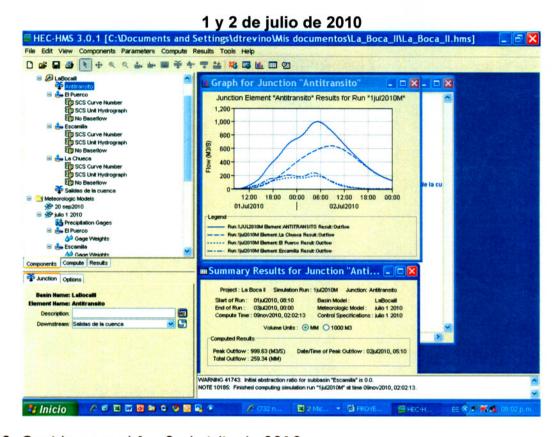


Figura 52.-Corrida para el 1 y 2 de julio de 2010

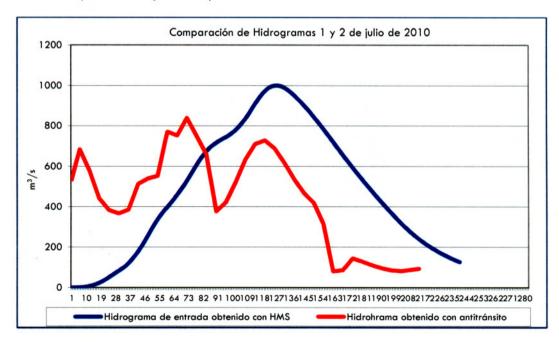


Figura 53.-Comparación de hidrogramas del 1 y 2 de julio d 2010

20 septiembre de 2010



Figura 54.-Corrida para el 20 de septiembre de 2010

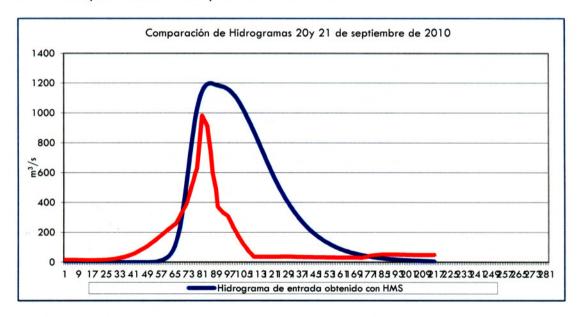


Figura 55-Comparación de hidrogramas del 20 de septiembre de 2010

Como se podrá notar en todos los casos los hidrogramas obtenidos con el modelo no son iguales a los obtenidos mediante los antitránsitos, sin embargo esta es la mejor manera de representar y poder calcular los hidrogramas que se pueden generar utilizando las lluvias proyectadas para cada período de retorno de interés.

3.4.4.- Revisión Hidrológica de presa La Boca

Por recomendación de los tutores, se ha tomado la decisión de utilizar los parámetros obtenidos con la calibración del modelo lluvia-escurrimiento realizada para los meses de septiembre de 2002, junio y julio de 2010 y septiembre de 2010, así como de la utilización de los parámetros fisiográficos de las tres subcuencas que conforman la cuenca de la presa La Boca para poder hacer la revisión hidrológica, ahora se ha tomado en cuenta que en la construcción del modelo lluvia-escurrimiento en el programa HEC-HMS en el componente Paired Data, se debe introducir las políticas de operación del vertedor, con la finalidad de que al hacer las corridas para cada período de retorno obligatorio en el análisis, se vaya generando al mismo tiempo el hidrograma de salida del vertedor y de esta manera poder evaluar si las capacidades asignadas a cada nivel de importancia de la presa son suficientes o si es necesario con base en los resultados proponer alguna modificación, los valores que se van a introducir al modelo lluvia-escurrimiento se presentan en las tablas 29.

Por recomendación de los tutores se tomó la decisión de utilizar la distribución temporal de la lluvia obtenida con los registros de las estaciones automáticas, tomando en cuenta y comparando los valores que más se parezcan entre las lluvias máximas proyectadas para los períodos de retorno de 50, 500, 1000 y 10 000 años y los registros de las estaciones automáticas, es evidente que las lluvias proyectadas superan por mucho las máximas registradas, sin embargo durante el impacto del huracán Alex (junio y julio de 2010) en la zona de influencia de las estaciones automáticas utilizadas en el presente trabajo, se registraron cantidades de precipitación muy elevadas tablas 21 y 22.

Por lo anterior, se tomó la decisión de utilizar las tormentas correspondientes a los días 1 y 2 de julio de 2010 de la estación La Estanzuela para los análisis asociados a los períodos de retorno de 50 y 500 años y las correspondientes a los días 30 de junio, tabla 30.

Lluvic	Lluvias máximas en 24 horas proyectadas con la FDP que más se ajustó Doble Gumbel Reducidas por el factor de reducción por área al 94%									
Tr		Estación C	limatológica	Distribución temporal de la lluvia						
- 11	El Cerrito	La Boca	Laguna de Sánchez							
50	309.51	282.14	309.74	La Estanzuela 1 y 2 de julio 2010						
500	416.14	371.13	438.22	La Estanzuela 1 y 2 de julio 2010						
1000	447.74	397.54	476.40	La Estanzuela 30 jun y 1 jul 2010						
10000	553.82	485.20	601.52	La Estanzuela 30 jun y 1 jul 2010						

Tabla 30.- Lluvias máximas afectadas por el factor de reducción proyectadas para diferentes períodos de retorno.

De esta manera es que se hacen las primeras corridas estableciendo como punto inicial en el nivel de la presa el que corresponde al vertedor que es de 441.44 msnm, esta condición se asigna seleccionando la presa dentro del componente Modelos de Cuenca (Basin Model) y se establecen diferentes políticas de operación tratando de descargar la menor cantidad de agua principalmente cuidando el pico del hidrograma de salida pero al mismo tiempo cuidando que el nivel de la presa no rebase el nivel asignado a la capacidad máxima extraordinaria (NAME). Los resultados se muestran en las figuras 56, 57, 58, 59, 60, 61, 62 y 63.

Recordando los niveles de operación de esta presa se presentan en la tabla 31

Característica	Capacidad (Mm3)	Área de Embalse ha	Elevación msnm
NAME	42.628	486.361	449.20
NAMO	39.490	466.870	448.54
NAMINO	3.495	86.000	435.00
Vertedor	13.759	246.733	441.44

Tabla 31.- Características de la presa La Boca (2004)

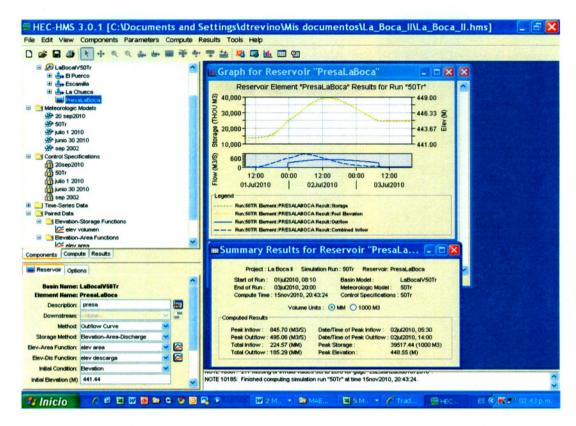


Figura 56.- Análisis, Tr=50 años con 3 compuertas abiertas a 3.5 m, iniciando en el nivel de la cresta del vertedor.

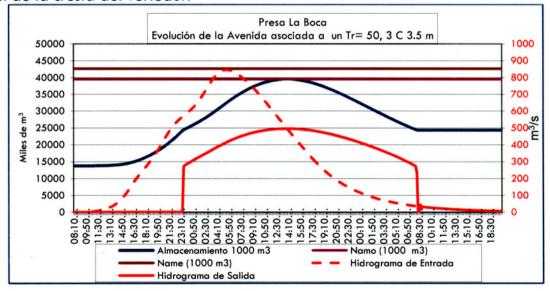


Figura 57.- Corrida efectuada para un período de retorno de 50 años, con una política de operación de 3 compuertas abiertas a 3.5 m., iniciando en el nivel de la cresta del vertedor.

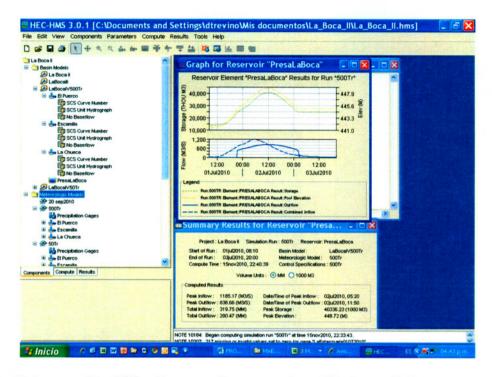


Figura 58.- Análisis para Tr=500 años, con 5 compuertas abiertas a 3.5 m, iniciando en el nivel de la cresta del vertedor.

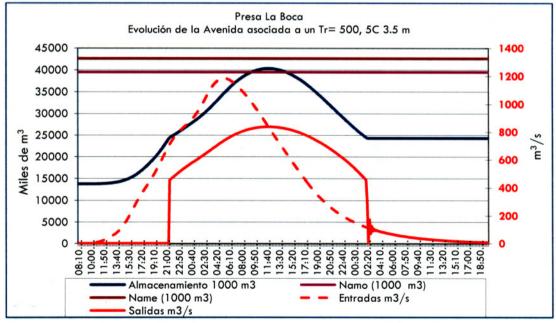


Figura 59.- Corrida efectuada para un Tr=500 años, con 5 compuertas abiertas a 3.5 m., iniciando en el nivel de la cresta del vertedor.

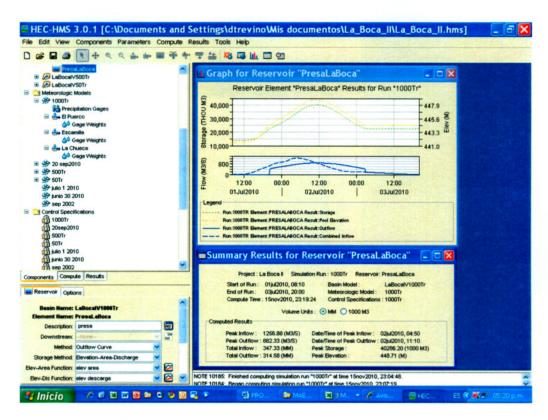


Figura 60.- Análisis Tr=1000 años, con 6 compuertas abiertas a 3 m

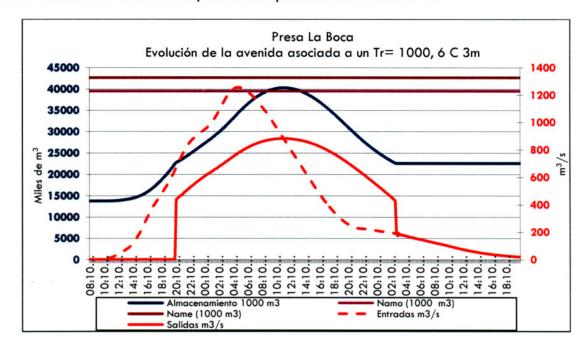


Figura 61.- Corrida efectuada para un Tr=1000 años, con 6 compuertas abiertas a 3 m., iniciando en el nivel de la cresta del vertedor.

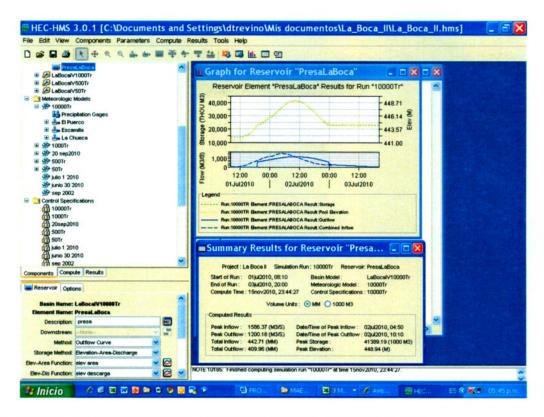


Figura 62.- Análisis Tr=10 000 años, con 8 compuertas abiertas a 3 m

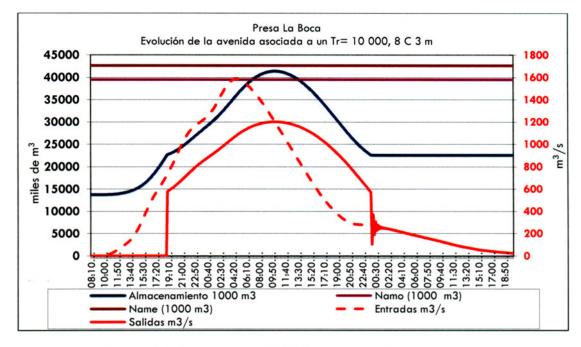


Figura 63.- Corrida efectuada para un Tr=10 000 años, con 8 compuertas abiertas a 3 m, iniciando en el nivel de la cresta del vertedor.

Es evidente que iniciando las corridas al nivel de la cresta del vertedor, en todos los casos el volumen almacenado no rebasa el nivel asignado al NAME, de tal manera que se procede a realizar los análisis iniciando las corridas a partir del nivel correspondiente al NAMO que es en la elevación 448.54msnm.

La primer corrida corresponde a un período de retorno de 10 000 años, los resultados se muestran en las figuras 64, 65 y 66 y la tabla 32.

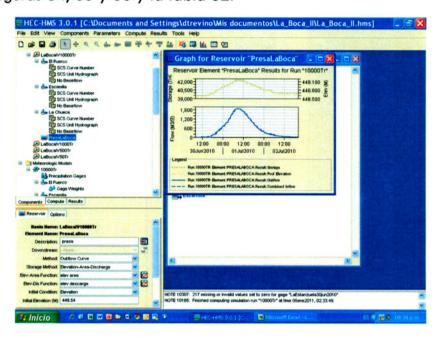


Figura 64.- Tránsito de la avenida correspondiente a un Tr=10 000 años

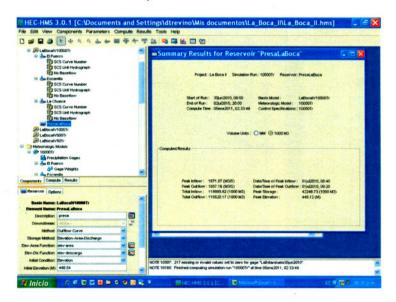


Figura 65.- Resultado de la corrida correspondiente a un Tr= 10 000 años

Fecha	Hora	Elevación	Almacenamiento	Entradas	Salidas	Namo (1000	Name
		m	1000 m ³	m ³ /s	m ³ /s	m ³)	(1000 m ³)
30-jun-10	08:10	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10 30-jun-10	08:20	448.54 448.54	39485.809 39485.809	0.000	0.000	39,298 39,298	42628 42628
30-jun-10	08:40	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	08:50	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	09:00	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	09:10	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	09:20	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	09:30	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	09:40	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10 30-jun-10	09:50 10:00	448.54 448.54	39485.809 39485.809	0.000	0.000	39,298 39,298	42628
30-jun-10	10:10	448.54	39485.809	0.000	0.000	39,298	42628 42628
30-jun-10	10:20	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	10:30	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	10:40	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	10:50	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	11:00	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	11:10	448.54	39485.809	0.000	0.000	39,298	42628
30-jun-10	11:20	448.54	39485.810	0.000	0.000	39,298	42628
30-jun-10 30-jun-10	11:30	448.54 448.54	39485.810 39485.811	0.001	0.000	39,298 39,298	42628
30-jun-10	11:50	448.54	39485.812	0.002	0.000	39,298	42628 42628
30-jun-10	12:00	448.54	39485.813	0.002	0.000	39,298	42628
30-jun-10	12:10	448.54	39485.816	0.006	0.000	39,298	42628
30-jun-10	12:20	448.54	39485.826	0.028	0.000	39,298	42628
30-jun-10	12:30	448.54	39485.854	0.066	0.000	39,298	42628
30-jun-10	12:40	448.54	39485.921	0.156	0.000	39,298	42628
30-jun-10	12:50	448.54	39486.065	0.326	0.000	39,298	42628
30-jun-10	13:00	448.54	39486.359	0.652	0.000	39,298	42628
30-jun-10 30-jun-10	13:10	448.54	39486.898	1.147	0.000	39,298	42628
30-jun-10	13:20	448.54 448.54	39487.782 39489.117	1.798 2.654	0.000	39,298 39,298	42628 42628
30-jun-10	13:40	448.54	39491.021	3.692	0.000	39,298	42628
30-jun-10	13:50	448.54	39493.612	4.944	0.000	39,298	42628
30-jun-10	14:00	448.54	39497.020	6.417	0.000	39,298	42628
30-jun-10	14:10	448.54	39501.408	8.209	0.000	39,298	42628
30-jun-10	14:20	448.55	39506.983	10.377	0.000	39,298	42628
30-jun-10	14:30	448.55	39513.971	12.915	0.000	39,298	42628
30-jun-10	14:40	448.55	39522.601	15.853	0.000	39,298	42628
30-jun-10 30-jun-10	14:50	448.55 448.55	39533.091 39545.631	19.116 22.684	0.000	39,298 39,298	42628 42628
30-jun-10	15:10	448.56	39560.380	26.479	0.000	39,298	42628
30-jun-10	15:20	448.56	39577.466	30.473	0.000	39,298	42628
30-jun-10	15:30	448.56	39596.987	34.596	0.000	39,298	42628
30-jun-10	15:40	448.57	39619.005	38.799	0.000	39,298	42628
30-jun-10	15:50	448.57	39643.566	43.071	0.000	39,298	42628
30-jun-10	16:00	448.58	39670.715	47.427	0.000	39,298	42628
30-jun-10	16:10	448.59	39700.543	51.998	0.000	39,298	42628
30-jun-10	16:20	448.59	39733.199 39768.863	56.857	0.000	39,298	42628 42628
30-jun-10 30-jun-10	16:30	448.60 448.61	39807.768	62.020 67.664	0.000	39,298 39,298	42628
30-jun-10	16:50	448.62	39850.142	73.583	0.000	39,298	42628
30-jun-10	17:00	448.63	39896.174	79.857	0.000	39,298	42628
30-jun-10	17:10	448.64	39946.088	86.525	0.000	39,298	42628
30-jun-10	17:20	448.65	39976.946	93.624	77.291	39,298	42628
30-jun-10	17:30	448.65	39982.945	101.300	97.635	39,298	42628
30-jun-10	17:40	448.65	39985.267	109.580	105.507	39,298	42628
30-jun-10	17:50	448.65	39987.812	118.549	114.138	39,298	42628
30-jun-10	18:00	448.65 448.65	39990.587	128.387 139.083	123.548 133.823	39,298 39,298	42628 42628
30-jun-10 30-jun-10	18:10	448.65	39993.617 39996.916	150.746	145.010	39,298	42628
30-jun-10	18:30	448.65	40000.487	163.285	157.119	39,298	42628
30-jun-10	18:40	448.65	40007.593	176.530	159.007	39,298	42628
30-jun-10	18:50	448.66	40022.289	190.507	159.044	39,298	42628
30-jun-10	19:00	448.66	40045.492	204.983	159.103	39,298	42628
30-jun-10	19:10	448.67	40077.454	219.845	159.185	39,298	42628
30-jun-10	19:20	448.68	40118.408	235.144	159.289	39,298	42628
30-jun-10	19:30	448.69	40168.582	250.801	159.412	39,298	42628
30-jun-10	19:40	448.70	40218.299	266.591	192.255	39,298	42628
30-jun-10	19:50	448.71	40261.529	282.623	212.860	39,298	42628

30-jun-10	20:00	448.72	40308.228	298.912	213.014	39,298	42628
30-jun-10	20:10	448.73	40364.694	315.528	213.205	39,298	42628
30-jun-10	20:20	448.74	40431.099	332.454	213.429	39,298	42628
30-jun-10	20:30	448.75	40488.051	349.560	278.743	39,298	42628
30-jun-10	20:40	448.76	40509.210	366.769	367.056	39,298	42628
30-jun-10	20:50	448.76	40511.439	384.077	376.360	39,298	42628
30-jun-10	21:00	448.76	40515.787	401.285	394.509	39,298	42628
30-jun-10	21:10	448.76	40520.048	418.568	411.142	39,298	42628
30-jun-10	21:20	448.76	40529.632	435.728	411.207	39,298	42628
30-jun-10	21:30	448.77 448.77	40549.464	452.927	411.341	39,298	42628
30-jun-10 30-jun-10	21:40	448.77	40579.506 40619.698	470.100 487.245	411.547 411.826	39,298	42628 42628
30-jun-10	22:00	448.79	40669.945	504.238	412.167	39,298 39,298	42628
30-jun-10	22:10	448.80	40721.845	521.121	440.193	39,298	42628
30-jun-10	22:10	448.81	40754.244	537.903	510.835	39,298	42628
30-jun-10	22:30	448.81	40773.948	554.720	516.106	39,298	42628
30-jun-10	22:40	448.82	40802.151	571.738	516.344	39,298	42628
30-jun-10	22:50	448.83	40840.415	588.827	516.674	39,298	42628
30-jun-10	23:00	448.84	40888.748	606.042	517.083	39,298	42628
30-jun-10	23:10	448.85	40946.845	623.162	518.463	39,298	42628
30-jun-10	23:20	448.86	40976.226	640.175	646.940	39,298	42628
30-jun-10	23:30	448.86	40976.671	657.135	648.886	39,298	42628
30-jun-10	23:40	448.86	40981.004	674.030	667.835	39,298	42628
30-jun-10	23:50	448.86	40984.806	690.937	684.460	39,298	42628
01-jul-10	00:00	448.86	40988.699	707.987	701.486	39,298	42628
01-jul-10	00:10	448.86	40992.565	724.771	718.388	39,298	42628
01-jul-10	00:20	448.86	40999.491	741.948	725.244	39,298	42628
01-jul-10	00:30	448.86	41014.671	759.323	725.426	39,298	42628
01-jul-10	00:40	448.87	41040.244	777.080	725.732	39,298	42628
01-jul-10	00:50	448.88	41076.371	795.231	726.156	39,298	42628
01-jul-10	01:00	448.89	41123.163	813.609	726.713	39,298	42628
01-jul-10	01:10	448.90	41180.650	832.130	727.401	39,298	42628
01-jul-10	01:20	448.91	41211.189	851.148	854.079	39,298	42628
01-jul-10	01:30	448.91	41212.893	870.840	862.231	39,298	42628
01-jul-10	01:40	448.91	41217.514	891.147	884.350	39,298	42628
01-jul-10	01:50	448.91	41221.807	912.403	904.892	39,298	42628
01-jul-10	02:00	448.91	41226.393	934.618	926.841	39,298	42628
01-jul-10	02:10	448.91	41231.161	957.776	949.660	39,298	42628
01-jul-10	02:20	448.91	41241.302	981.853	956.168	39,298	42628
01-jul-10	02:30	448.92	41264.065	1006.740	956.549	39,298	42628
01-jul-10	02:40	448.92	41301.657	1032.290	957.174	39,298	42628
01-jul-10	02:50	448.94	41354.332	1058.516	958.046	39,298	42628
01-jul-10	03:00	448.95	41422.292	1085.228	959.167	39,298	42628
01-jul-10 01-jul-10	03:10	448.96 448.96	41456.370 41456.810	1112.949	1125.415 1127.653	39,298	42628 42628
01-jul-10	03:20	448.96	41463.645	1171.236	1162.389	39,298 39,298	42628
01-jul-10	03:40	448.96	41469.399	1201.969	1191.635		
01-jul-10	03:50	448.96	41482.036	1233.910	1202.122	39,298 39,298	42628 42628
01-jul-10	04:00	448.97	41510.775	1266.731	1202.721	39,298	42628
01-jul-10	04:10	448.98	41559.066	1300.687	1203.728	39,298	42628
01-jul-10	04:20	448.99	41627.173	1335.216	1205.151	39,298	42628
01-jul-10	04:30	449.00	41681.237	1369.967	1319.820	39,298	42628
01-jul-10	04:40	449.01	41695.289	1405.053	1408.358	39,298	42628
01-jul-10	04:50	449.01	41698.218	1439.876	1426.809	39,298	42628
01-jul-10	05:00	449.01	41704.537	1474.624	1466.626	39,298	42628
01-jul-10		449.01	41709.777	1509.109	1499.641	39,298	42628
01-jul-10	05:20	449.01	41722.801	1542.858	1508.915	39,298	42628
01-jul-10	05:30	449.02	41752.790	1575.748	1509.728	39,298	42628
01-jul-10	05:40	449.03	41801.546	1607.547	1511.046	39,298	42628
01-jul-10	05:50	449.04	41868.009	1637.786	1512.742	39,298	42628
01-jul-10	06:00	449.06	41926.911	1666.562	1595.266	39,298	42628
01-jul-10	06:10	449.06	41952.021	1693.413	1681.012	39,298	42628
01-jul-10	06:20	449.06	41966.753	1718.146	1681.439	39,298	42628
01-jul-10	06:30	449.07	41995.358	1740.913	1682.269	39,298	42628
01-jul-10	06:40	449.08	42036.442	1761.841	1683.540	39,298	42628
01-jul-10	06:50	449.09	42088.608	1780.665	1685.077	39,298	42628
01-jul-10	07:00	449.10	42147.519	1797.685	1696.904	39,298	42628
01-jul-10	07:10	449.11	42179.235	1812.662	1807.723	39,298	42628
01-jul-10	07:20	449.11	42182.576	1825.591	1819.395	39,298	42628
01-jul-10	07:30	449.11	42186.034	1836.809	1831.478	39,298	42628
01-jul-10	07:40	449.11	42189.026	1846.576	1841.933	39,298	42628
01-jul-10 01-jul-10	07:50 08:00	449.11 449.11	42191.598 42194.627	1854.851 1861.524	1850.920 1855.359	39,298 39,298	42628 42628

				/-			
01-jul-10	08:10	449.11	42199.767	1866.496	1855.529	39,298	42628
01-jul-10	08:20	449.11	42207.191	1869.554	1855.774	39,298	42628
01-jul-10	08:30	449.12	42215.811	1871.011	1856.059	39,298	42628
01-jul-10	08:40	449.12	42224.711	1871.067	1856.353	39,298	42628
01-jul-10	08:50	449.12	42233.134	1869.997	1856.632	39,298	42628
01-jul-10	09:00	449.12	42240.392	1867.697	1856.871	39,298	42628
01-jul-10	09:10	449.12	42245.792	1864.236	1857.059	39,298	42628
01-jul-10	09:20	449.12	42248.726	1859.765	1857.162	39,298	42628
01-jul-10	09:30	449.12	42248.661	1854.340	1857.160	39,298	42628
01-jul-10	09:40	449.12	42245.144	1848.133	1857.036	39,298	42628
01-jul-10	09:50	449.12	42237.757	1841.065	1856.784	39,298	42628
01-jul-10	10:00	449.12	42225.998	1832.919	1856.396	39,298	42628
01-jul-10	10:10	449.11	42209.371	1823.899	1855.846	39,298	42628
01-jul-10	10:20	449.11	42190.144	1813.694	1845.838	39,298	42628
01-jul-10	10:30	449.11	42179.070	1802.374	1807.144	39,298	42628
01-jul-10	10:40	449.11	42175.850	1789.933	1795.895	39,298	42628
01-jul-10	10:50	449.11	42172.110	1776.319	1782.825	39,298	42628
01-jul-10	11:00	449.11	42168.048	1761.602	1768.634	39,298	42628
01-jul-10	11:10	449.10	42163.692	1745.927	1753.415	39,298	42628
01-jul-10	11:20	449.10	42159.121	1729.688	1737.440	39,298	42628
01-jul-10	11:30	449.10	42154.421	1713.105	1721.019	39,298	42628
01-jul-10	11:40	449.10	42149.590	1695.950	1704.139	39,298	42628
01-jul-10	11:50	449.10	42144.531	1678.122	1686.797	39,298	42628
01-jul-10	12:00	449.10	42133.879	1659.636	1686.467	39,298	42628
01-jul-10	12:10	449.09	42112.310	1640.732	1685.797	39,298	42628
01-jul-10	12:20	449.09	42079.784	1621.468	1684.822	39,298	42628
01-jul-10	12:30	449.08	42036.296	1601.929	1683.536	39,298	42628
01-jul-10	12:40	449.07	41981.899	1582.164	1681.879	39,298	42628
01-jul-10	12:50	449.06	41934.331	1562.168	1621.015	39,298	42628
01-jul-10	13:00	449.05	41914.020	1541.673	1550.528	39,298	42628
01-jul-10	13:10	449.05	41908.364	1520.903	1530.900	39,298	42628
01-jul-10	13:20	449.05	41901.214	1499.802	1513.641	39,298	42628
01-jul-10	13:30	449.05	41886.615	1478.424	1513.245	39,298	42628
01-jul-10	13:40	449.04	41859.493	1456.924	1512.511	39,298	42628
01-jul-10	13:50	449.03	41819.967	1435.351	1511.517	39,298	42628
01-jul-10	14:00	449.02	41768.159	1413.617	1510.144	39,298	42628
01-jul-10	14:10	449.01	41708.774	1391.897	1493.319	39,298	42628
01-jul-10	14:20	449.01	41685.442	1369.961	1346.313	39,298	42628
01-jul-10	14:30	449.01	41688.037	1347.671	1362.666	39,298	42628
01-jul-10	14:40	449.00	41682.580	1325.089	1328.283	39,298	42628
01-jul-10	14:50	449.00	41679.575	1302.527	1309.349	39,298	42628
01-jul-10	15:00	449.00	41675.810	1279.903	1285.630	39,298	42628
01-jul-10	15:10	449.00	41672.282	1257.362	1263.398	39,298	42628
01-jul-10	15:20	449.00	41668.700	1234.923	1240.828	39,298	42628
01-jul-10	15:30	449.00	41665.126	1212.305	1218.312	39,298	42628
01-jul-10	15:40	449.00	41658.460	1189.588	1205.802	39,298	42628
01-jul-10	15:50	449.00	41642.030	1166.910	1205.460	39,298	42628
01-jul-10	16:00	448.99	41612.287	1144.245	1204.840	39,298	42628
01-jul-10	16:10	448.98	41569.416	1121.639	1203.944	39,298	42628
01-jul-10	16:20	448.97	41513.572	1098.937	1202.780	39,298	42628
01-jul-10	16:30	448.96	41460.823	1076.056	1148.044	39,298	42628
01-jul-10	16:40	448.95	41440.996	1053.175	1047.276	39,298	42628
01-jul-10	16:50	448.95	41439.686	1030.352	1040.618	39,298	42628
01-jul-10	17:00	448.95	41434.550	1007.661	1014.515	39,298	42628
01-jul-10	17:10	448.95	41430.243	985.126	992.627	39,298	42628
01-jul-10	17:20	448.95	41425.790	962.648	969.992	39,298	42628
01-jul-10	17:30	448.95	41417.923	940.218	959.095	39,298	42628
01-jul-10 01-jul-10	17:40	448.95	41399.985	917.881	958.799	39,298	42628
	17:50	448.94 448.93	41368.933	895.700	958.287	39,298	42628
01-jul-10 01-jul-10	18:00	448.93	41325.010	873.739	957.561	39,298	42628
01-jul-10	18:10	448.91	41268.491 41218.944	852.050 830.609	956.623 891.193	39,298 39,298	42628 42628
01-jul-10	18:20	448.90	41218.944	809.274	891.193	39,298	42628
01-jul-10	18:40	448.90	41199.298	788.105	797.168	39,298	42628
01-jul-10	18:50	448.90	41194.505	767.317	774.230	39,298	42628
01-jul-10	19:00	448.90	41194.505	746.946	754.072	39,298	42628
01-jul-10	19:10	448.90	41190.293	726.986	733.906	39,298	42628
01-jul-10	19:10	448.90	41178.026	707.447	727.370	39,298	42628
01-jul-10		448.90	411/8.026		727.159	39,298	42628
01-jul-10	19:30	448.90	41131.649	688.379 669.707	726.814		42628
			41131.649			39,298	
01-jul-10	19:50	448.88		651.508	726.341	39,298	42628
01-jul-10	20:00	448.87	41042.016 40988.778	633.751	725.753	39,298	42628
01-jul-10	20:10	448.86	40988.//8	616.369	701.828	39,298	42628

	Maria (1900)						
01-jul-10	20:20	448.85	40964.393	599.376	595.198	39,298	42628
01-jul-10	20:30	448.85	40963.326	582.793	590.530	39,298	42628
01-jul-10	20:40	448.85	40959.220	566.623	572.573	39,298	42628
01-jul-10	20:50	448.85	40955.637	550.917	556.908	39,298	42628
01-jul-10	21:00	448.85	40952.098	535.626	541.432	39,298	42628
01-jul-10		448.85	40948.656	520.713	526.381	39,298	42628
01-jul-10	21:20	448.85	40943.518	506.094	517.553	39,298	42628
01-jul-10	21:30	448.85	40932.373	491.765	517.457	39,298	42628
01-jul-10	21:40	448.84	40912.839	477.870	517.289	39,298	42628
01-jul-10	21:50	448.84	40885.237				
				464.464	517.054	39,298	42628
	22:00	448.83	40849.872	451.463	516.756	39,298	42628
01-jul-10	22:10	448.82	40807.019	438.837	516.385	39,298	42628
01-jul-10	22:20	448.81	40756.918	426.507	515.963	39,298	42628
01-jul-10	22:30	448.80	40722.151	414.428	440.861	39,298	42628
01-jul-10	22:40	448.80	40710.432	402.678	415.309	39,298	42628
01-jul-10	22:50	448.80	40700.310	391.268	412.379	39,298	42628
01-jul-10	23:00	448.80	40684.347	380.169	412.267	39,298	42628
01-jul-10	23:10	448.79	40661.900	369.387	412.111	39,298	42628
01-jul-10	23:20	448.78	40633.203	358.984	411.917	39,298	42628
01-jul-10	23:30	448.78	40598.505	348.950	411.679	39,298	42628
01-jul-10	23:40	448.77	40558.027	339.203	411.399	39,298	42628
01-jul-10	23:50	448.76	40516.301	329.758	396.650	39,298	42628
02-jul-10	00:00	448.76	40497.255	320.567	317.159	39,298	42628
02-jul-10	00:10	448.76	40496.973	311.630	315.980	39,298	42628
02-jul-10	00:10	448.76	40494.667	303.019	306.355	39,298	42628
02-jul-10							
	00:30	448.75	40492.670	294.698	298.019	39,298	42628
02-jul-10	00:40	448.75	40490.704	286.582	289.814	39,298	42628
02-jul-10	00:50	448.75	40488.789	278.672	281.822	39,298	42628
02-jul-10	01:00	448.75	40486.925	270.975	274.040	39,298	42628
02-jul-10	01:10	448.75	40485.113	263.502	266.477	39,298	42628
02-jul-10	01:20	448.75	40483.358	256.278	259.152	39,298	42628
02-jul-10	01:30	448.75	40481.658	249.263	252.056	39,298	42628
02-jul-10	01:40	448.75	40480.004	242.437	245.155	39,298	42628
02-jul-10	01:50	448.75	40478.394	235.781	238.432	39,298	42628
02-jul-10	02:00	448.75	40476.821	229.281	231.870	39,298	42628
02-jul-10	02:10	448.75	40475.289	222.958	225.475	39,298	42628
02-jul-10	02:20	448.75	40473.801	216.824	219.266	39,298	42628
02-jul-10	02:30	448.75	40472.257	210.852	213.559	39,298	42628
02-jul-10	02:40	448.75	40468.892	205.039	213.549	39,298	42628
02-jul-10		448.75	40462.096	199.383	213.527	39,298	42628
02-jul-10	03:00	448.75	40451.971	193.889	213.495	39,298	42628
02-jul-10	03:10	448.74	40438.628	188.582	213.453	39,298	42628
02-jul-10	03:10	448.74	40422.194	183.493	213.400	39,298	42628
02-jul-10	03:30	448.74	40402.789	178.559	213.334	39,298	42628
02-jul-10	03:40	448.73	40380.507	173.761	213.259	39,298	42628
02-jul-10	03:50	448.73	40355.428	169.074	213.174	39,298	42628
02-jul-10	04:00	448.72	40327.618	164.478	213.079	39,298	42628
02-jul-10	04:10	448.71	40297.137	159.974	212.976	39,298	42628
02-jul-10	04:20	448.71	40264.043	155.557	212.868	39,298	42628
02-jul-10	04:30	448.70	40230.433	151.245	205.970	39,298	42628
02-jul-10	04:40	448.69	40204.975	147.057	177.192	39,298	42628
02-jul-10	04:50	448.69	40190.561	142.986	160.899	39,298	42628
02-jul-10	05:00	448.69	40179.068	139.039	159.436	39,298	42628
02-jul-10	05:10	448.69	40165.695	135.225	159.405	39,298	42628
02-jul-10	05:20	448.68	40150.094	131.545	159.369	39,298	42628
02-jul-10		448.68	40132.339	127.965	159.325	39,298	42628
02-jul-10	05:40	448.67	40112.494	124.483	159.274	39,298	42628
02-jul-10	05:50	448.67	40090.615	121.082	159.218	39,298	42628
02-jul-10	06:00	448.66	40066.754	117.755	159.158	39,298	42628
02-jul-10	06:10	448.66	40040.956	114.501	159.092	39,298	42628
	06:10					39,298	
02-jul-10		448.65	40013.267	111.315	159.021		42628
02-jul-10	06:30	448.65	39992.453	108.204	129.876	39,298	42628
02-jul-10	06:40	448.65	39985.557	105.178	106.492	39,298	42628
02-jul-10	06:50	448.65	39984.730	102.240	103.685	39,298	42628
02-jul-10	07:00	448.65	39983.877	99.396	100.793	39,298	42628
02-jul-10	07:10	448.65	39983.057	96.675	98.012	39,298	42628
02-jul-10	07:20	448.65	39982.271	94.067	95.348	39,298	42628
02-jul-10	07:30	448.65	39981.512	91.528	92.775	39,298	42628
02-jul-10	07:40	448.65	39980.774	89.055	90.270	39,298	42628
02-jul-10	07:50	448.65	39980.053	86.637	87.825	39,298	42628
02-jul-10	08:00	448.65	39979.347	84.270	85.433	39,298	42628
02-jul-10	08:10	448.65	39978.657	81.954	83.092	39,298	42628
02-jul-10	08:20	448.65	39977.982	79.689	80.802	39,298	42628
02-101-10	00.20	7-10.00	J7777.70Z	, 7.007	00.002	37,270	72020

02-jul-10	08:30	448.65	39977.323	77.486	78.569	39,298	4262
02-jul-10	08:40	448.65	39976.683	75.347	76.398	39,298	4262
02-jul-10	08:50	448.65	39976.062	73.272	74.292	39,298	4262
02-jul-10	09:00	448.65	39975.460	71.267	72.252	39,298	4262
02-jul-10	09:10	448.64	39974.881	69.345	70.289	39,298	4262
02-jul-10 02-jul-10	09:20 09:30	448.64 448.64	39974.324	67.486	68.399	39,298	4262
02-jul-10	09:40	448.64	39973.784 39973.257	65.679	66.567 64.781	39,298 39,298	4262 4262
02-jul-10		448.64	39972.742	62.185	63.035	39,298	4262
02-jul-10	10:00	448.64	39972.238	60.492	61.324	39,298	4262
02-jul-10	10:10	448.64	39971.743	58.833	59.648	39,298	4262
	10:20	448.64	39971.260	57.212	58.009	39,298	4262
02-jul-10	10:30	448.64	39970.789	55.638	56.411	39,298	4262
02-jul-10	10:40	448.64	39970.331	54.108	54.860	39,298	4262
	10:50	448.64	39969.888	52.626	53.355	39,298	4262
02-jul-10		448.64	39969.458	51.196	51.899	39,298	4262
02-jul-10		448.64	39969.045	49.824	50.498	39,298	4262
	11:20	448.64	39968.647	48.491	49.146	39,298	4262
02-jul-10		448.64	39968.259	47.192	47.831	39,298	4262
02-jul-10		448.64	39967.879	45.920	46.545	39,298	426
	11:50	448.64	39967.508	44.672	45.285	39,298	4262
02-jul-10		448.64	39967.144	43.449	44.050	39,298	4262
02-jul-10		448.64	39966.787	42.251	42.840	39,298	426
02-jul-10	12:20	448.64	39966.438	41.080	41.655	39,298	426
02-jul-10		448.64	39966.097	39.942	40.501	39,298	426
02-jul-10		448.64	39965.766	38.835	39.379	39,298	426
02-jul-10		448.64	39965.445	37.762	38.289	39,298	426
02-jul-10	13:00	448.64	39965.135	36.730	37.237	39,298	426
02-jul-10		448.64	39964.837	35.740	36.227	39,298	426
02-jul-10	13:20	448.64	39964.549	34.776	35.250	39,298	426
02-jul-10	13:30	448.64	39964.268	33.835	34.297	39,298	426
02-jul-10	13:40	448.64	39963.993	32.914	33.367	39,298	426
02-jul-10	13:50	448.64	39963.724	32.010	32.455	39,298	426
02-jul-10	14:00	448.64	39963.461	31.125	31.560	39,298	426
02-jul-10	14:10	448.64	39963.202	30.257	30.683	39,298	426
02-jul-10	14:20	448.64	39962.949	29.408	29.825	39,298	426
02-jul-10	14:30	448.64	39962.702	28.583	28.988	39,298	426
02-jul-10	14:40	448.64	39962.462	27.779	28.174	39,298	426
02-jul-10	14:50	448.64	39962.229	27.000	27.383	39,298	426
02-jul-10	15:00	448.64	39962.003	26.251	26.619	39,298	426
02-jul-10	15:10	448.64	39961.787	25.529	25.883	39,298	426
02-jul-10	15:20	448.64	39961.577	24.826	25.171	39,298	426
02-jul-10		448.64	39961.372	24.141	24.478	39,298	426
02-jul-10	15:40	448.64	39961.172	23.471	23.800	39,298	426
02-jul-10	15:50	448.64	39960.976	22.813	23.136	39,298	426
	16:00	448.64	39960.784	22.168	22.485	39,298	426
02-jul-10	16:10	448.64	39960.596	21.535	21.846	39,298	426
02-jul-10	16:20	448.64	39960.412	20.918	21.221	39,298	426
	16:30	448.64	39960.232	20.317	20.612	39,298	426
02-jul-10		448.64	39960.057	19.732	20.020	39,298	426
	16:50	448.64	39959.888	19.167	19.445	39,298	426
02-jul-10		448.64	39959.725	18.625	18.891	39,298	426
02-jul-10		448.64	39959.568	18.102	18.359	39,298	426
02-jul-10		448.64	39959.416	17.595	17.844	39,298	426
	17:30	448.64	39959.268	17.100	17.343	39,298	426
02-jul-10	17:40	448.64	39959.124	16.618	16.855	39,298	426
02-jul-10	17:50	448.64	39958.983	16.146	16.378	39,298	426
02-jul-10	18:00	448.64	39958.846	15.683	15.911	39,298	426
02-jul-10	18:10	448.64	39958.711	15.232	15.454	39,298	426
02-jul-10	18:20	448.64	39958.580	14.795	15.010	39,298	426
02-jul-10	18:30	448.64	39958.453	14.369	14.578	39,298	426
02-jul-10	18:40	448.64	39958.329	13.956	14.159	39,298	426
02-jul-10	18:50	448.64	39958.210	13.558	13.754	39,298	426
02-jul-10	19:00	448.64	39958.094	13.175	13.363	39,298	426
	19:10	448.64	39957.983	12.802	12.985	39,298	426
02-jul-10						20 200	426
02-jul-10 02-jul-10	19:20	448.64	39957.874	12.438	12.617	39,298	
02-jul-10	19:20 19:30	448.64 448.64 448.64	39957.874 39957.768 39957.664	12.438 12.081 11.731	12.617 12.257 11.903	39,298 39,298 39,298	426 426

Tabla 32.- Resultado del tránsito de la avenida de diseño asociada a un Tr= 10000 años.

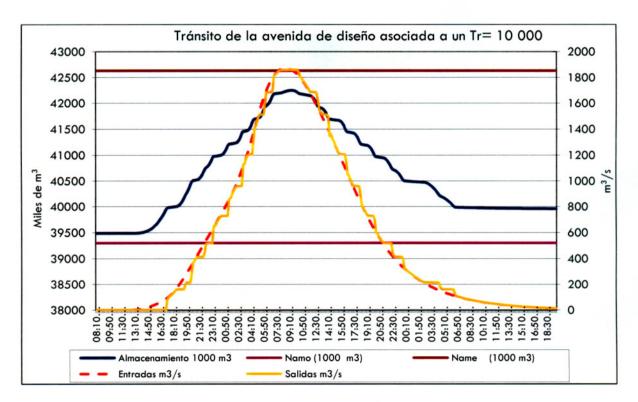


Figura 66.- Tránsito de la avenida asociada a un Tr=10000 años a partir del NAMO.

Los resultados que se muestran en las figuras 64, 65 y 66 y la tabla 32, corresponden a un $Tr=10\,000$ años, los cuales demuestran que el volumen transitado es de 118,999.82 miles de metros cúbicos, el volumen desalojado es de 118,528.17 miles de metros cúbicos, el gasto máximo de entrada es de 1871.07 m³/s, el gasto máximo extraído es de 1857.16 m³/s, el almacenamiento máximo es de 42,248.73 miles de metros cúbicos correspondiendo a una elevación de 449.12 msnm.

Con base en los resultados anteriores, se demuestra que esta presa de almacenamiento es segura hidrológicamente ya que al transitar la avenida de diseño asociada a 10 000 años, el volumen generado puede ser extraído por el vertedor sin rebasar la capacidad de éste y sin rebasar la capacidad asignada al NAME de la presa.

La política de operación que se asignó a esta corrida, se muestra en la figura 67 para esta corrida y para las correspondientes a los períodos de retorno de 50, 500 y 1000 años .



Figura 67.- Políticas de operación del vertedor de la presa La Boca

Sin embargo, los gastos de descarga necesarios para regular la avenida en el vaso y evitar que el nivel del agua rebase el NAME, provocan inundación aguas abajo del embalse, la razón es porque todas o la mayoría de las presas se diseñan con un vertedor que permita desalojar cualquier cantidad de avenidas incluyendo la de diseño pero no se piensa en los daños que se pueden ocasionar aguas abajo de la presa ya que en la mayoría de los casos, las capacidades máximas de los vertedores rebasan por mucho las capacidades hidráulicas de los cauces aguas abajo.

Como información complementaria se muestran los resultados de las corridas o simulaciones para los períodos de retorno de 50, 500 y 1000 años

Los resultados obtenidos con la avenida asociada a 1000 años es el siguiente: El volumen transitado es de 93 449.02 miles de metros cúbicos, el volumen desalojado es de 93,214.08 miles de metros cúbicos, el gasto máximo de entrada es de 1363.58 m³/s, el gasto máximo extraído es de 1 279.63 m³/s, el almacenamiento máximo es de 42 363.86 miles de metros cúbicos correspondiendo a una elevación de 449.15 msnm. Figuras 68 y 69.

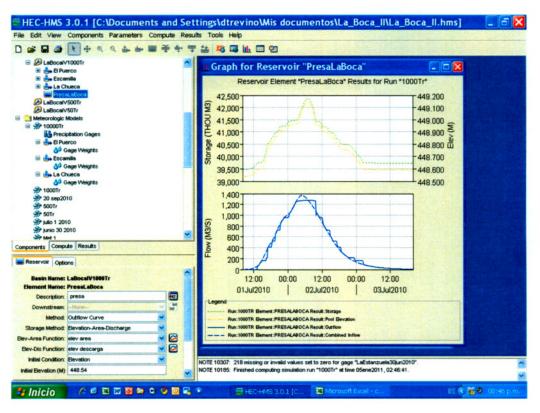


Figura 68.- Resultado del tránsito de la avenida asociada a un Tr=1000 años.

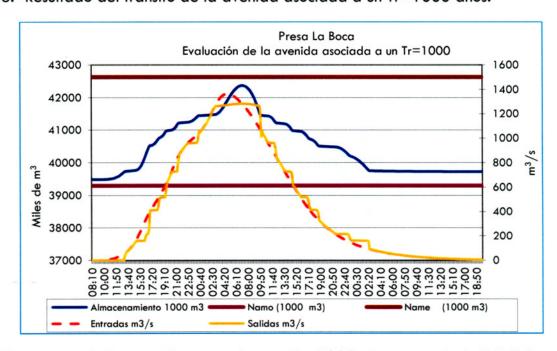


Figura 69.- Tránsito de la avenida asociada a un Tr=1000 años, a partir del NAMO.

Los resultados obtenidos con la avenida asociada a 500 años es el siguiente: El volumen transitado es de 85 723.84 miles de metros cúbicos, el volumen desalojado es de 85 487.80 miles de metros cúbicos, el gasto máximo de entrada es de 1 185.17 m³/s, el gasto máximo extraído es de 1,084.93 m³/s, el almacenamiento máximo es de 42 619.14 miles de metros cúbicos correspondiendo a una elevación de 449.20 msnm. Figuras 70 y 71.

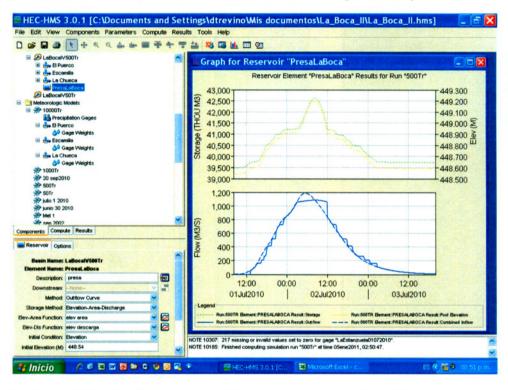


Figura 70.- Resultado del tránsito de la avenida asociada a un Tr=500 años.

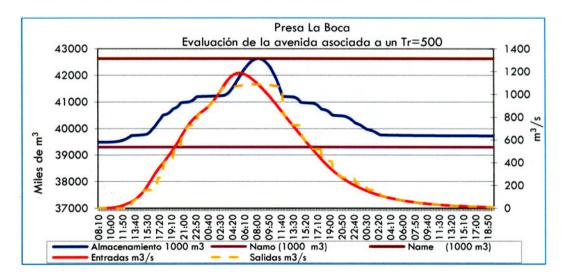


Figura 71.- Tránsito de la avenida asociada a un Tr=500 años a partir del NAMO

Los resultados obtenidos con la avenida asociada a 50 años es el siguiente: El volumen transitado es de 60 206.54 miles de metros cúbicos, el volumen desalojado es de 60 064.67 miles de metros cúbicos, el gasto máximo de entrada es de 845.70 m³/s, el gasto máximo extraído es de 744.27 m³/s, el almacenamiento máximo es de 42 634.51 miles de metros cúbicos correspondiendo a una elevación de 449.20 msnm. Figuras 72 y 73.

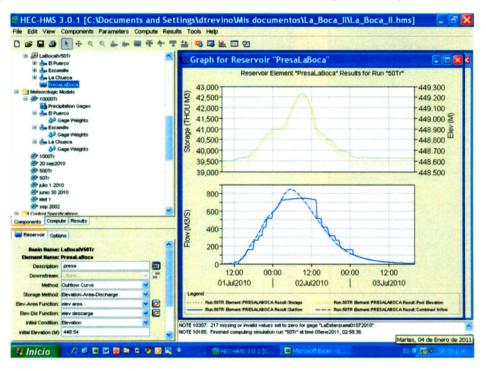


Figura 72.- Resultado del tránsito de la avenida asociada a un Tr= 50 años

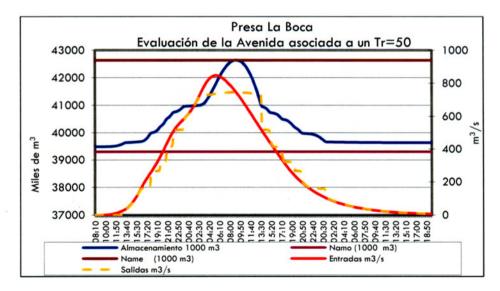


Figura 73.- Tránsito de la avenida asociada a un Tr= 50 años, a partir del NAMO.

Capítulo 4

REVISIÓN HIDROLÓGICA DE LA PRESA EL CUCHILLO-SOLIDARIDAD

4.1.- Análisis de Frecuencias de Avenidas

El análisis de frecuencias de avenidas consiste en describir probabilísticamente la ocurrencia de gastos máximos anuales por medio de una función de distribución de probabilidad, cuyos parámetros se estiman utilizando la información histórica, la cual se considera como una muestra aleatoria. El proceso de estimación de los parámetros de la distribución se conoce normalmente como "ajuste de la distribución". Para el efecto, es común emplear el método de momentos o el de máxima verosimilitud (Kite, 1988). La función de distribución de mejor ajuste se utiliza para determinar la magnitud de eventos asociados con diferentes niveles de riesgo, particularmente el que corresponde al periodo de retorno de diseño (Kite, 1988).

El análisis de frecuencias de gastos máximos anuales sólo permite determinar un parámetro del hidrograma de diseño, esto es, el gasto pico. No obstante, el diseño hidrológico de una presa para manejo de crecientes exige conocer el hidrograma completo, a fin de transitarlo por el vaso. Por lo anterior, en la práctica se emplean procedimientos arbitrarios para definir el hidrograma de diseño, una vez que se ha estimado el caudal asociado con el periodo de retorno de diseño. El procedimiento más común consiste en "mayorar" la avenida máxima histórica (o alguna otra registrada), suponiendo que la forma del hidrograma de diseño será la misma que la correspondiente a la creciente registrada.

Por lo anteriormente expuesto, el término "estimación de avenidas de diseño" basada en el enfoque hidrométrico, se considera sinónimo de "estimación de gastos pico". El gasto máximo de una avenida es una variable de diseño aceptable, solamente cuando la variación temporal del almacenamiento de la cuenca no es un factor importante en el proceso de generación de escurrimiento (Mc Cuen, 1998). Adicionalmente, es bien sabido que los vasos de las presas exhiben diferente sensibilidad al gasto pico y al volumen de una avenida (Aldama, 2005). El método de mayoración subordina el volumen de la avenida al gasto pico, ya que una vez determinado éste, el volumen queda automáticamente definido. (A. Aldama, J. Aparicio, A. Ramírez, R. Mejía, Ó. Santillán, J. López, J. L. Esparza y J. F. Gómez, 2005)

4.1.1.- Análisis de Frecuencias los Gastos Máximos Anuales de la estación hidrométrica El Cuchillo, N. L.

En virtud de que en la cuenca del río San Juan y particularmente en la cuenca de la presa El Cuchillo-Solidaridad, N. L. existe una serie de estaciones hidrométricas con abundantes registros, históricos de hidrometría por lo que se ha seleccionado la estación hidrométrica El Cuchillo, N. L. localizada aguas abajo del sitio donde se aloja la cortina de la presa para hacer el análisis hidrológico y revisar la Seguridad Hidrológica de este embalse.

Es importante señalar que los datos fueron obtenidos de los registros archivados en la Dirección Técnica del Organismo de Cuenca Río Bravo los cuales difieren en parte de los registros publicados en el Banco Nacional de Datos de Aguas Superficiales (BANDAS).

El análisis de frecuencias de los gastos máximos anuales de la estación hidrométrica El Cuchillo, N. L. que se llevó a cabo con el Software AX, el cual fue desarrollado por el Centro Nacional de Prevención de Desastres (CENAPRED, 1997) y es de aplicación generaliza en nuestro país, se determinaron los gastos máximos asociados a cada período de retorno obteniendo las valores de acuerdo a la función de distribución de probabilidad que mejor se ajustó, tabla 33.

Gastos Máximos Anuales

Año	Q m3/s	Año	Q m3/s
1930	659.250	1962	301.643
1931	230.136	1963	434.717
1932	68.827	1964	266.528
1933	1850.540	1965	835.637
1934	186.029	1966	537.947
1935	469.174	1967	3775.310
1936	546.220	1968	353.184
1937	78.141	1969	246.859
1938	3355.610	1970	464.443
1939	503.593	1971	505.074
1940	311.718	1972	388.970
1941	664.828	1973	2501.570
1942	577.570	1974	840.694
1943	482.474	1975	643.714
1944	1126.170	1976	1081.000
1945	1755.350	1977	2000.000
1946	368.231	1978	3500.000
1947	1036.260	1979	355.000
1948	690.705	1980	225.930
1949	223.268	1981	396.000
1950	232.686	1982	210.000
1951	1348.770	1983	366.890
1952	114.987	1984	183.874
1953	1832.240	1985	115.176
1954	254.365	1986	963.670
1955	253.637	1987	688.610
1956	71.864	1988	8315.060
1957	421.219	1989	505.326
1958	1145.380	1990	392.627
1959	113.871	1991	161.501
1960	1014.340	1992	153.868
1961	415.489	1993	250.938

Tabla 33.- Gastos máximos anuales de la estación Hidrométrica El Cuchillo, N. L. La función de distribución de probabilidad que mejor se ajustó es la Doble Gumbel ya que es la función que presenta el mínimo error estándar de acuerdo a la tabla 34.

	Noi	rmal		Log n	Gumbel			
Estación	Momentos			Momentos	Máxima verosimilitud			
	2 parámetros			3 parámetros	2 parámetros	3 parámetros	2 parámetros	2 parámetros
El Cuchillo	907.808	907.808	472.035	480.013	576.971	624.218	702.945	822.547

Expo	onencial		Gar		Mínimo error		
Momentos	Máxima verosimilitud	Mom	entos	Máxima ver	osimilitud	Doble Gumbel	Estándar
2 parámetros	2 parámetros	2 parámetros	3 parámetros	2 parámetros	3 parámetros		
558.380	659.283	515.330	537.045	692.855	11111.000	376.285	376.285

Tabla 34.- Resultado del análisis de frecuencias de los gastos máximos de la estación El Cuchillo, N. L.

Una vez que se ha obtenido la FDP que mejor se ajustó a los datos históricos, se procede a calcular el período de retorno asociado a los datos observados, datos que se muestran en la tabla 35. Figura 74.

No de orden	Tr	Observado	Calculado	Error cuadrático	No de orden	Tr	Observado	Calculado	Error cuadrático
1	65.00	8315.06	5725.07	6708067.26	33	2.00	434.72	435.38	0.44
2	32.50	3775.31	4586.27	657656.79	34	1.90	421.22	423.19	3.88
3	21.70	3500.00	3887.46	150128.50	35	1.90	415.49	411.30	17.53
4	16.30	3355.61	3364.78	84.14	36	1.80	396.00	399.69	13.61
5	13.00	2501.57	2934.76	187652.03	37	1.80	392.63	388.32	18.62
6	10.80	2000.00	2558.83	312286.93	38	1.70	388.97	377.15	139.77
7	9.30	1858.54	2215.76	127609.15	39	1.70	368.23	366.16	4.29
8	8.10	1832.24	1893.28	3725.65	40	1.60	367.00	355.32	136.42
9	7.20	1755.35	1591.89	26720.62	41	1.60	355.00	344.61	108.01
10	6.50	1348.77	1335.79	168.59	42	1.60	353.18	333.99	368.11
11	5.90	1145.38	1151.44	36.77	43	1.50	311.72	323.46	137.71
12	5.40	1126.17	1027.08	9818.47	44	1.50	301.64	312.96	128.25
13	5.00	1081.00	939.15	20121.79	45	1.40	266.53	302.50	1293.77

14	4.60	1036.26	872.79	26720.98	46	1.40	254.37	292.03	1418.28
15	4.30	1014.34	820.04	37750.83	47	1.40	253.37	281.53	792.97
16	4.10	964.00	776.40	35193.29	48	1.40	250.94	270.97	401.11
17	3.80	840.69	739.19	10302.61	49	1.30	246.86	260.31	180.92
18	3.60	835.64	706.75	16613.38	50	1.30	232.69	249.52	283.33
19	3.40	690.71	677.97	162.31	51	1.30	230.14	238.56	70.88
20	3.30	688.67	652.06	1340.60	52	1.30	226.00	227.37	1.89
21	3.10	664.83	628.45	1323.15	53	1.20	223.27	215.90	54.25
22	3.00	659.25	606.75	2755.75	54	1.20	210.00	204.08	35.00
23	2.80	643.71	586.63	3257.93	55	1.20	186.03	191.82	33.54
24	2.70	577.57	567.84	94.61	56	1.20	184.00	179.00	24.98
25	2.60	546.22	550.19	15.74	57	1.10	161.50	165.47	15.80
26	2.50	537.95	533.51	19.75	58	1.10	153.87	151.03	8.06
27	2.40	505.33	517.67	152.25	59	1.10	115.00	135.37	414.85
28	2.30	505.07	502.57	6.24	60	1.10	114.99	118.02	9.16
29	2.20	503.59	488.12	239.34	61	1.10	113.87	98.19	245.86
30	2.20	482.47	474.24	67.73	62	1.10	78.14	74.38	14.11
31	2.10	469.17	460.86	69.08	63	1.00	71.86	43.01	832.06
32	2.00	464.44	447.92	272.85	64	1.00	68.83	-9.79	6180.73

Tabla 35.- Períodos de retorno asociados a los datos observados

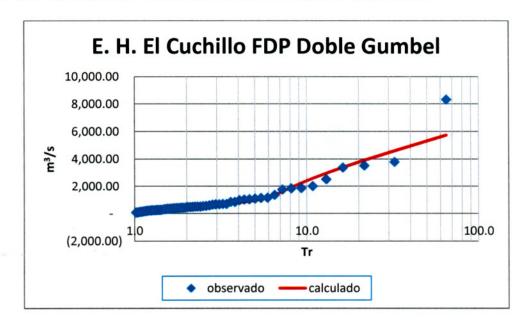
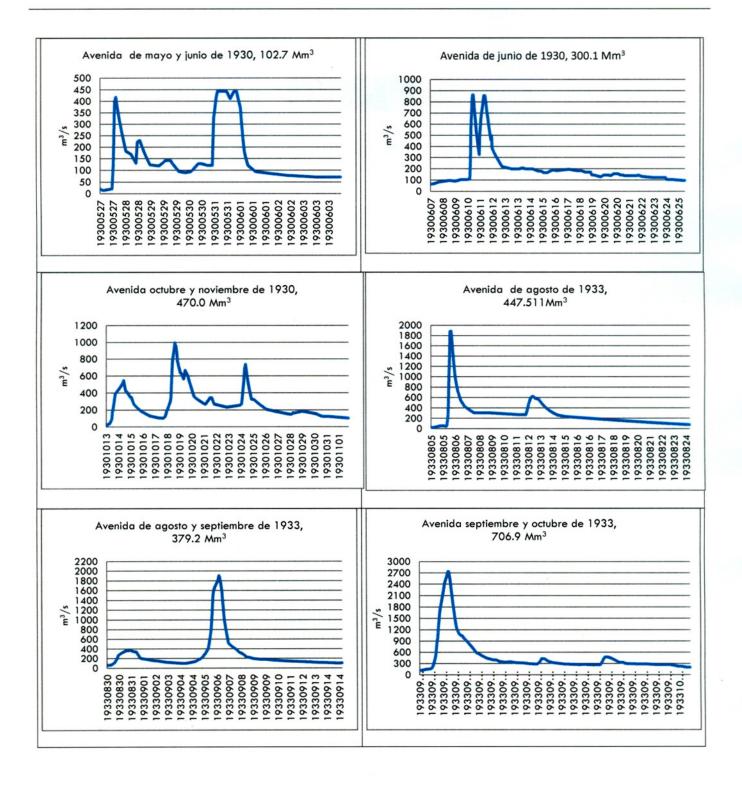


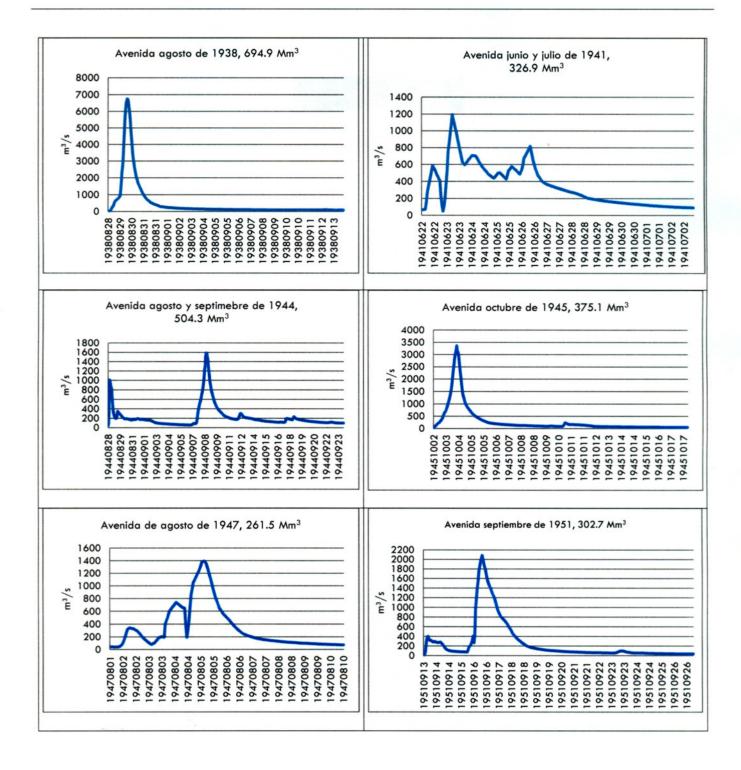
Figura 74.- Períodos de retorno asociados a los datos observados

Utilizando el programa AX y la FDP Doble Gumbel, hizo la extrapolación para obtener los períodos de retorno proyectados hasta 10 000 años, los resultados se muestran en la tabla 36.

Tr	Q m ³ /s
2	441.61
5	939.15
10	2384.12
20	3744.86
50	5299.57
100	6413.52
200	7506.76
500	8939.57
1000	10016.25
2000	11092.93
5000	12517.46
10000	13643.84


Tabla 36.- Gastos máximos asociados a distintos períodos de retorno.

4.1.2.- Hidrogramas de avenidas históricas en la estación hidrométrica El Cuchillo, N. L.


En virtud de que el método para llevar a cabo la revisión hidrológica de la presa es mediante el enfoque hidrométrico, se ha utilizado la metodología para hacer la mayoración del hidrograma que presenta el gasto máximo más elevado y de esta manera poder reconstruir el hidrograma asociado al gasto máximo de 13 643.84 m³/s y por consecuencia el volumen que este hidrograma produce para ser transitado en el vaso con el objetivo de realizar la revisión hidrológica de esta presa.

En la Figura 75 se presentan las avenidas seleccionadas obtenidas de los datos horarios y el volumen que estas avenidas aportaron del BANDAS a partir de 441.6 Mm³ que corresponde al gasto máximo para un período de retorno de 2 años, los registros que se revisaron son a partir de junio de 1927.

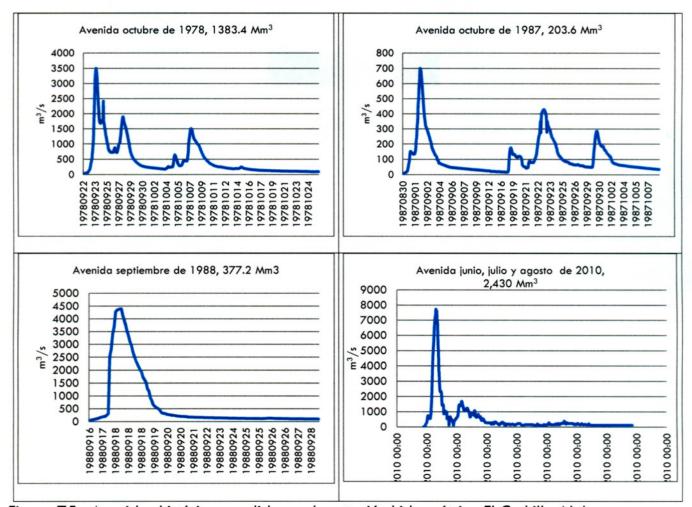


Figura 75.- Avenidas históricas medidas en la estación hidrométrica El Cuchillo, N. L.

Del análisis de los hidrogramas revisados, se destaca que el gasto máximo de cada avenida no necesariamente corresponde a un hidrograma con el mayor volumen, la razón es la fuente que dio origen a los mencionados hidrogramas, la mayor parte de ellos son originados por influencia o remanentes de ciclones tropicales y algunos por la mezcla de remanentes de ciclones tropicales y la influencia de frentes fríos, es por ello las distintas formas y picos de los hidrogramas analizados y la condición de humedad antecedente en la cuenca.

La avenida que presenta el mayor volumen corresponde a la avenida provocada por los efectos del ciclón tropical Alex (junio, julio y agosto de 2010) la cual reporta el mayor gasto máximo y el mayor volumen, el gasto máximo es de 7 727.6 m³/s y un volumen de 2 430 Mm³, estos datos fueron obtenidos no por aforos directos en la estación hidrométrica localizada más aguas arriba de la presa de nombre Las Enramadas de reciente operación la cual resultó

rebasada por esta avenida, sino por medio del antitránsito deducido en el vaso de la presa El Cuchillo-Solidaridad, N. L.

Si bien es cierto, el gasto máximo que se menciona en la tabla de gastos máximos utilizados para obtener los correspondientes a distintos períodos de retorno, es superior al que se menciona en el párrafo anterior, el cual corresponde al gasto máximo aforado durante la avenida producida por el Huracán Gilberto en septiembre de 1988, no se analizó esta avenida en virtud de que tanto el volumen como los gastos horarios reportados en el BANDAS correspondiente a esta avenida, no corresponden con los registros que se tienen en los archivos de la Dirección Técnica del Organismo de Cuenca Río Bravo los cuales son superiores.

Recordando las capacidades de esta presa que al NAMO el volumen almacenado es de $1123.1~\text{Mm}^3$ y al NAME de $1~784.2~\text{Mm}^3$, de tal manera que el volumen destinado para el control de avenidas es de $661.1~\text{Mm}^3$, es necesario conocer cuál será la política de operación para esta presa la cual debe permitir desalojar de una forma controlada el volumen aportado por la creciente resultante por la avenida mayorada a un Tr=10~000~años.

4.1.3.- Método de Mayoración (M)

Este método es uno de los más populares y de mayor arraigo en México, debido a la rapidez y facilidad en su aplicación (Domínguez et al., 1980). A partir del análisis de los gastos medios diarios se determina la máxima avenida registrada, la cual se puede considerar como la más adversa.

El criterio para seleccionar dicha avenida puede tomar en cuenta el valor registrado más grande de Qp, Vt o una combinación de ambos. Una vez seleccionada, se deberá obtener un hidrograma adimensional, donde cada ordenada será Qo/Qp para 0=1 hasta la duración d (horas o días). Con el objetivo de estimar los eventos de diseño para diferentes periodos de retorno (QT), se deberá realizar un análisis de frecuencias a los gastos máximos anuales y, mediante un criterio de bondad de ajuste, seleccionar aquella distribución de probabilidad que mejor describa el comportamiento de la muestra analizada. Finalmente, para obtener la avenida de diseño solo se requiere multiplicar las ordenadas Qo/Qp del hidrograma adimensional por el valor estimado de QT, obteniendo así una avenida con las mismas características de la más adversa registrada, solo que más grande (mayorada). Una desventaja de este método es que en algunas ocasiones la avenida propuesta como más adversa es superada al año siguiente, por lo que se presentan dudas sobre los pronósticos realizados (Fabián Rivera Trejo y Carlos Escalante Sandoval, marzo de 1999).

De esta manera utilizando los gastos horarios de la avenida registrada entre junio y agosto de 2010 se obtuvo e hidrograma adimensional que se muestra en la figura 76.

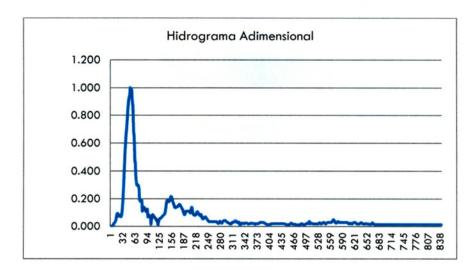


Figura 76.- Hidrograma adimensional obtenido a partir de la avenida de junio-agosto de 2010.

Con el hidrograma adimensional se hizo la mayoración de la avenida al gasto asociado al Tr=10 000 años que corresponde a 13 643.84 m³/s, el volumen que produce esta avenida es de 4 291.954 Mm³. figura 77

Figura 77.- Hidrograma de la avenida asociada a un Tr=10 000 años.

4.2.- Revisión hidrológica de presa El Cuchillo-Solidaridad

Una vez obtenidos los datos del hidrograma asociado a un Tr de 10 000 que equivale a un gasto máximo de 13 643.84 m³/s, y a un volumen de 4 291.954 Mm³. en 840 horas equivalente a 35 días, se procede a seleccionar el método para realizar el tránsito de la avenida en el vaso y poder determinar la seguridad hidrológica del mismo. Las características del vaso de la presa El Cuchillo-Solidaridad se muestran en la tabla 2 y solo se menciona que el nivel de la cresta del vertedor se localiza en 151.75 msnm con un volumen de 242.566 Mm³ y superficie de embalse de 4 427.683 Ha.

4.2.1.-Tránsito de la avenida en el vaso

Para llevar a cabo el tránsito de la avenida en el vaso se decidió utilizar el programa HEC-HMS para lo cual fue necesario la elaboración del diseño conceptual del Modelo para la presa El Cuchillo y como no se va a utilizar un modelo lluvia-escurrimiento, solo se asignaron algunos componentes del programa para que éste pudiera realizar las simulaciones a los diferentes período de retorno.

En el Modelo de Cuenca (Basin Model) se creó un modelo de cuenca hipotética denominada eh, en donde se crearon dos componentes denominados hidrograma y presa El Cuchillo.

El segundo componente necesario es el Modelo Meteorológico (Meterorlogic Model) en donde se creó un modelo meteorológico hipotético denominado Met 1.

El tercer componente es el Control de Especificaciones (Control Specifications) en este sitio se establece el inicio y terminación del cálculo de los hidrogramas así como el intervalo del cálculo de los mismos.

El cuarto componente es el Times-Series Data, en este paso se seleccionó el componente Discharge Gages en donde se creó el subcomponente denominado hidrograma de entrada, y se le asigna la duración del hidrograma de entrada.

Cabe señalar que el hidrograma de entrada es el hidrograma que se obtuvo de la mayoración de la avenida asociada a un Tr=10 000 años el cual es utilizado para ser transitado en el vaso mediante la aplicación del programa HEC-HMS.

El quinto componente denominado Paired Data es el campo en donde se introducen los pares de datos, en este caso se seleccionan las funciones Elevation-Storage-Functions en donde se introduce la tabla de elevaciones-almacenamientos de la presa El Cuchillo previamente transformados los valores del volumen de millones de metros cúbicos a miles de metros cúbicos; también se selecciona la componente de Elevation-Area-Functions, en donde se introduce la tabla de elevaciones-área de embalse previamente transformada de hectáreas a metros cuadrados, también se selecciona la componente Elevation-Discharge-Functions en donde se introducen las diferentes curvas de descarga del vertedor en donde se van a seleccionar las políticas de operación que mejor se adapten y finalmente se selecciona la componente Unit Hydrograph curves en donde se introduce la duración y los valores horarios del hidrograma de entrada, figura 78.

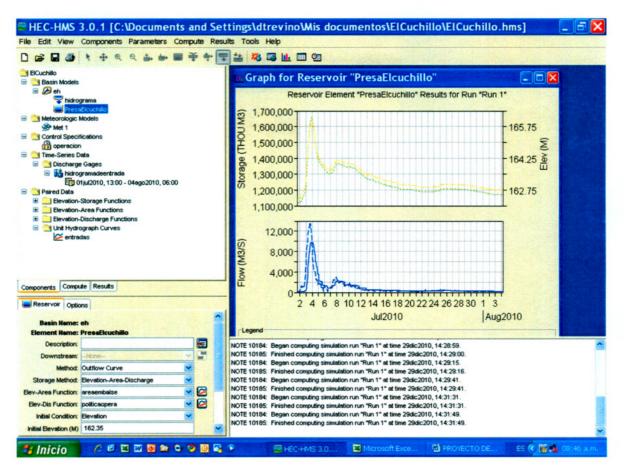


Figura 78.- Elaboración del Modelo en el programa HEC-HMS para la presa El Cuchillo-Solidaridad.

En la figura 78, se muestran los resultados de la corrida para una avenida asociada un Tr=10 000 años con lo cual se hace la revisión hidrológica de la presa EL Cuchillo, como se podrá observar, la corrida se hace considerando como valor de inicio la elevación al NAMO que corresponde a una elevación de 162.35 msnm.

Los resultados obtenidos son los siguientes: El volumen transitado es de 2 841464.91 miles de metros cúbicos, el volumen desalojado es de 2 791 714.65 miles de metros cúbicos, el gasto máximo de entrada es de 13 643.84 m³/s, el gasto máximo extraído es de 9 843.64 m³/s, el almacenamiento máximo alcanzado es de 1 657 762.02 miles de metros cúbicos correspondiendo a una elevación de 165.98 msnm.

Con base en los resultados anteriores, se demuestra que esta presa de almacenamiento es segura hidrológicamente ya que al transitar la avenida de diseño asociada a un Tr=10 000 años, el volumen generado puede ser extraído por el vertedor sin rebasar la capacidad de éste y sin rebasar la capacidad asignada al NAME de la presa. Figuras 79 y 80 tabla 37.

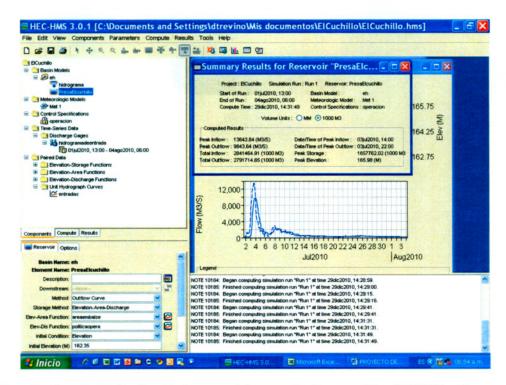


Figura 79.- Resultados del tránsito de la avenida asociada a un Tr=10,000 años.

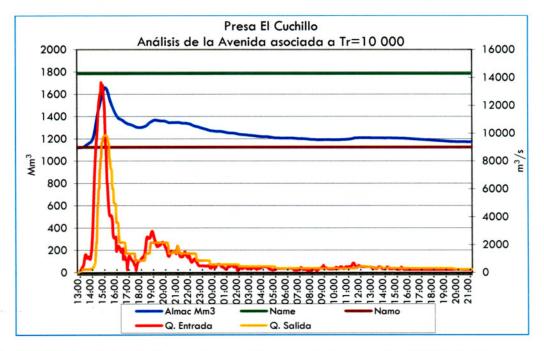


Figura 80.- Resultados del tránsito de la avenida asociada a un Tr=10 000 años, a partir del NAMO

Fecha	Hora	Elev. M	Almac Mm ³	Q. Entrada	Q. Salida	Name	Namo
01-jul-10	13:00	162.35	1119.300	0	0	1,784.29	1,123.
01-jul-10	14:00	162.35	1119.300	0.000	0.000	1,784.29	1,123.
01-jul-10	15:00	162.35	1119.302	1.360	0.202	1,784.29	1,123.
01-jul-10	16:00	162.35	1119.315	8.162	2.191	1,784.29	1,123.
01-jul-10	17:00	162.35	1119.358	27.206	8.951	1,784.29	1,123.
01-jul-10	18:00	162.35	1119.461	63.935	24.928	1,784.29	1,123
01-jul-10	19:00	162.35	1119.648	118.347	53.817	1,784.29	1,123
01-jul-10	20:00	162.36	1119.923	185.002	96.513	1,784.29	1,123
01-jul-10	21:00	162.36	1120.272	255.737	150.553	1,784.29	1,123
01-jul-10	22:00	162.36	1120.685	322.388	198.319	1,784.29	1,123
01-jul-10	23:00	162.37	1121.229	376.786	198.366	1,784.29	1,123
02-jul-10	00:00	162.37	1121.952	421.649	198.427	1,784.29	1,123
02-jul-10	01:00	162.38	1122.863	481.462	198.498	1,784.29	1,123
02-jul-10	02:00	162.39	1124.099	602.481	198.595	1,784.29	1,123
02-jul-10	03:00	162.40	1125.925	809.196	198.738	1,784.29	1,123
02-jul-10	04:00	162.42	1128.575	1060.810	198.953	1,784.29	1,123
02-jul-10	05:00	162.45	1132.020	1251.227	199.220	1,784.29	1,123
02-jul-10	06:00	162.48	1135.878	1290.675	199.529	1,784.29	1,123
02-jul-10	07:00	162.51	1139.622	1188.673	199.826	1,784.29	1,123
02-jul-10	08:00	162.53	1142.942	1055.393	200.084	1,784.29	1,123
02-jul-10	09:00	162.56	1145.930	1005.086	200.320	1,784.29	1,123
02-jul-10	10:00	162.58	1148.917	1055.432	200.553	1,784.29	1,123
02-jul-10	11:00	162.60	1152.119	1124.812	200.799	1,784.29	1,123
02-jul-10	12:00	162.63	1155.440	1122.088	201.062	1,784.29	1,123
02-jul-10	13:00	162.65	1158.604	1037.739	201.304	1,784.29	1,123
	14:00			945.221			
02-jul-10		162.68	1161.448		201.521	1,784.29	1,123
02-jul-10	15:00	162.70	1164.100	931.594	201.722	1,784.29	1,123
02-jul-10	16:00	162.72	1166.916	1036.311	201.946	1,784.29	1,123
02-jul-10	17:00	162.74	1170.313	1255.289	202.204	1,784.29	1,123
02-jul-10	18:00	162.78	1174.576	1581.719	266.755	1,784.29	1,123
02-jul-10	19:00	162.82	1180.126	2035.995	267.314	1,784.29	1,123
02-jul-10	20:00	162.87	1187.606	2654.836	268.067	1,784.29	1,123
02-jul-10	21:00	162.95	1197.639	3455.926	269.069	1,784.29	1,123
02-jul-10	22:00	163.04	1210.575	4405.269	405.522	1,784.29	1,123
02-jul-10	23:00	163.16	1226.801	5422.620	407.898	1,784.29	1,123
03-jul-10	00:00	163.31	1246.389	6415.486	547.626	1,784.29	1,123
03-jul-10	01:00	163.47	1269.122	7313.134	551.917	1,784.29	1,123
03-jul-10	02:00	163.65	1294.311	8067.962	834.886	1,784.29	1,123
03-jul-10	03:00	163.83	1320.515	8665.336	1340.646	1,784.29	1,123
03-jul-10	04:00	164.01	1346.346	9142.823	2116.837	1,784.29	1,123
03-jul-10	05:00	164.19	1372.428	9600.620	2136.614	1,784.29	1,123
03-jul-10	06:00	164.36	1397.694	10139.443	3566.889	1,784.29	1,123
03-jul-10	07:00	164.51	1420.305	10777.205	4788.257	1,784.29	1,123
03-jul-10	08:00	164.66	1442.725	11428.177	4961.417	1,784.29	1,123
03-jul-10	09:00	164.80	1442.723	11976.470	5967.056	1,784.29	1,123
03-jul-10	10:00	164.94	1487.417	12371.740	6028.523	1,784.29	1,123
03-jul-10	11:00	165.08	1508.312	12634.082	7368.793	1,784.29	1,123
03-jul-10	12:00	165.20	1527.439	12799.731	7438.887	1,784.29	1,123
03-jul-10	13:00	165.31	1545.597	12873.215	8146.364	1,784.29	1,123
03-jul-10	14:00	165.42	1563.868	13643.841	8220.159	1,784.29	1,123
03-jul-10	15:00	165.53	1581.388	13555.963	9246.438	1,784.29	1,123
03-jul-10	16:00	165.62	1596.455	13384.441	9323.678	1,784.29	1,123
03-jul-10	17:00	165.70	1610.359	13057.695	9394.028	1,784.29	1,123
03-jul-10	18:00	165.78	1623.710	13422.178	9668.429	1,784.29	1,123
03-jul-10	19:00	165.85	1635.559	12559.049	9729.917	1,784.29	1,123
03-jul-10	20:00	165.91	1645.072	12234.990	9778.950	1,784.29	1,123
03-jul-10	21:00	165.96	1653.064	11803.748	9819.759	1,784.29	1,123
03-jul-10	22:00	165.98	1657.762	10469.415	9843.637	1,784.29	1,123
03-jul-10	23:00	165.98	1657.503	9072.904	9842.318	1,784.29	1,123
04-jul-10	00:00	165.97	1654.724	9053.709	9828.210	1,784.29	1,123
04-jul-10	01:00	165.94	1649.551	7702.411	9801.832	1,784.29	1,123
04-101-10	01100	103.74	1047.331	7702.411	9752.376	1,784.29	1,123

04-jul-10	03:00	165.81	1627.832	6243.420	9689.877	1,784.29	1,123.1
04-jul-10	04:00	165.73	1614.448	5425.847	9414.606	1,784.29	1,123.1
04-jul-10	05:00	165.64	1599.089	4792.807	9337.027	1,784.29	1,123.1
04-jul-10	06:00	165.53	1582.089	4349.593	9250.057	1,784.29	1,123.1
04-jul-10	07:00	165.43	1565.847	4105.602	8228.129	1,784.29	1,123.1
04-jul-10	08:00	165.34	1550.989	4036.400	8168.228	1,784.29	1,123.1
04-jul-10	09:00	165.25	1536.912	4071.338	7760.136	1,784.29	1,123.1
04-jul-10	10:00	165.18	1524.291	4104.391	7427.439	1,784.29	1,123.1
04-jul-10	11:00	165.10	1512.316	4053.969	7383.546	1,784.29	1,123.1
04-jul-10	12:00	165.02	1500.139	3902.829	7338.537	1,784.29	1,123.1
04-jul-10	13:00	164.96	1489.713	3678.716	6034.799	1,784.29	1,123.1
04-jul-10	14:00	164.89	1479.519	2699.453	6006.779	1,784.29	1,123.1
04-jul-10	15:00	164.82	1467.379	2535.783	5973.129	1,784.29	1,123.
04-jul-10	16:00	164.75	1456.634	2459.787	4991.995	1,784.29	1,123.
04-jul-10	17:00	164.69	1447.545	2455.229	4972.075	1,784.29	1,123.
04-jul-10	18:00	164.63	1438.564	2479.633	4952.194	1,784.29	1,123.
04-jul-10	19:00	164.57	1429.746	2506.085	4932.679	1,784.29	1,123.
04-jul-10	20:00	164.51	1421.122	2548.668	4913.408	1,784.29	1,123.
04-jul-10	21:00	164.46	1413.095	1495.485	3590.114	1,784.29	1,123.
04-jul-10	22:00	164.41	1405.809	1626.142	3579.117	1,784.29	1,123.
04-jul-10	23:00	164.37	1399.044	1763.711	3568.961	1,784.29	1,123.
05-jul-10	00:00	164.33	1392.735	1859.609	3559.364	1,784.29	1,123.
05-jul-10	01:00	164.29	1386.685	1888.543	3550.135	1,784.29	1,123.
05-jul-10	02:00	164.25	1382.078	1860.438	2758.037	1,784.29	1,123.
05-jul-10	03:00	164.24	1379.846	1799.890	2142.128	1,784.29	1,123.
05-jul-10	04:00	164.23	1378.484	1726.585	2141.118	1,784.29	1,123.
05-jul-10	05:00	164.22	1376.834	1637.337	2139.891	1,784.29	1,123.
05-jul-10	06:00	164.21	1374.838	1532.151	2138.407	1,784.29	1,123.
05-jul-10	07:00	164.19	1372.492	1439.712	2136.661	1,784.29	1,123.
05-jul-10	08:00	164.17	1369.943	1415.798	2134.762	1,784.29	1,123.
05-jul-10	09:00	164.16	1367.522	1506.626	2132.914	1,784.29	1,123.
05-jul-10	10:00	164.14	1365.634	1709.010	2131.443	1,784.29	1,123.
05-jul-10	11:00	164.12	1362.701	922.377	2129.248	1,784.29	1,123.
05-jul-10	12:00	164.10	1358.702	1111.359	2126.248	1,784.29	1,123.
05-jul-10	13:00	164.07	1355.166	1173.979	2123.590	1,784.29	1,123.
05-jul-10	14:00	164.05	1351.633	1107.965	2120.929	1,784.29	1,123.
05-jul-10	15:00	164.02	1347.762	979.798	2117.906	1,784.29	1,123.
05-jul-10	16:00	164.00	1344.789	879.183	1392.283	1,784.29	1,123.
05-jul-10	17:00	163.99	1343.030	886.477	1350.989	1,784.29	1,123.
05-jul-10	18:00	163.98	1341.356	884.651	1350.213	1,784.29	1,123.
05-jul-10	19:00	163.96	1338.410	177.963	1348.858	1,784.29	1,123.
05-jul-10	20:00	163.93	1334.814	520.578	1347.219	1,784.29	1,123.
05-jul-10	21:00	163.92	1332.417	840.892	1346.106	1,784.29	1,123.
05-jul-10	22:00	163.91	1331.001	1064.007	1345.471	1,784.29	1,123.
05-jul-10	23:00	163.90	1330.163	1161.231	1345.070	1,784.29	1,123.
06-jul-10	00:00	163.90	1329.488	1153.277	1344.788	1,784.29	1,123.
06-jul-10	01:00	163.89	1328.683	1089.000	1344.446	1,784.29	1,123.
06-jul-10	02:00	163.88	1327.630	1014.096	1343.933	1,784.29	1,123.
06-jul-10	03:00	163.87	1326.328	949.794	1343.301	1,784.29	1,123.
06-jul-10	04:00	163.86	1324.823	900.367	1342.645	1,784.29	1,123.
06-jul-10	05:00	163.85	1323.160	859.970	1341.859	1,784.29	1,123.
06-jul-10	06:00	163.84	1321.360	822.779	1340.999	1,784.29	1,123.
06-jul-10	07:00	163.83	1319.412	776.586	1340.132	1,784.29	1,123.
06-jul-10	08:00	163.81	1317.258	705.951	1339.083	1,784.29	1,123.
06-jul-10	09:00	163.79	1314.808	609.804	1337.983	1,784.29	1,123.
06-jul-10	10:00	163.77	1312.019	515.235	1336.686	1,784.29	1,123.
06-jul-10	11:00	163.76	1309.432	471.113	1086.655	1,784.29	1,123.
06-jul-10	12:00	163.74	1307.751	519.969	838.565	1,784.29	1,123.
06-jul-10	13:00	163.73	1305.912	135.406	838.062	1,784.29	1,123
06-jul-10	14:00	163.72	1303.743	334.614	837.467	1,784.29	1,123
		163.71	1302.280	527.443	837.066	1,784.29	1,123.
06-jul-10	13:00 1	103./ 1					
06-jul-10 06-jul-10	15:00	163.70	1301.421	669.272	836.831	1,784.29	1,123.

06-jul-10	18:00	163.69	1300.706	782.411	836.634	1 794 20	1 122
06-jul-10	19:00	163.69	1300.531	793.565	836.586	1,784.29	1,123.
06-jul-10	20:00	163.69	1300.393	803.125	836.548	1,784.29	1,123.
06-jul-10	21:00	163.69	1300.313	825.433	836.526	1,784.29	1,123.
06-jul-10	22:00	163.69	1300.348	866.862	836.536	1,784.29	1,123.
06-jul-10	23:00	163.69	1300.557	922.632	836.593	1,784.29	1,123.
07-jul-10	00:00	163.70	1300.971	980.320	836.707	1,784.29	1,123.
07-jul-10	01:00	163.70	1301.573	1028.123	836.872	1,784.29	1,123.
07-jul-10	02:00	163.71	1302.330	1066.366	837.080	1,784.29	1,123.
07-jul-10	03:00	163.71	1303.216	1100.158	837.323	1,784.29	1,123.
07-jul-10	04:00	163.72	1304.222	1133.634	837.599	1,784.29	1,123.
07-jul-10	05:00	163.73	1305.357	1172.227	837.910	1,784.29	1,123.
07-jul-10	06:00	163.74	1306.677	1237.593	838.271	1,784.29	1,123.
07-jul-10	07:00	163.75	1308.353	1370.208	838.729	1,784.29	1,123
07-jul-10	08:00	163.76	1309.926	1601.284	1258.751	1,784.29	1,123.
07-jul-10	09:00	163.77	1311.583	1914.267	1336.502	1,784.29	1,123.
07-jul-10	10:00	163.79	1314.230	2230.755	1337.700	1,784.29	1,123.
07-jul-10	11:00	163.81	1317.851	2458.005	1339.370	1,784.29	1,123.
07-jul-10	12:00	163.84	1322.042	2551.076	1341.314	1,784.29	1,123.
07-jul-10	13:00	163.87	1326.375	2540.574	1343.324	1,784.29	1,123.
07-jul-10	14:00	163.90	1330.591	2490.241	1345.272	1,784.29	1,123.
07-jul-10	15:00	163.93	1334.633	2447.877	1347.132	1,784.29	1,123.
07-jul-10	16:00	163.96	1338.560	2429.732	1348.931	1,784.29	1,123
07-jul-10	17:00	163.99	1342.471	2442.797	1350.719	1,784.29	1,123
07-jul-10	18:00	164.01	1345.636	2503.987	1837.978	1,784.29	1,123
07-jul-10	19:00	164.02	1347.738	2619.690	2117.888	1,784.29	1,123
07-jul-10	20:00	164.04	1349.809	2768.553	2119.504	1,784.29	1,123
07-jul-10	21:00	164.05	1352.380	2900.539	2121.492	1,784.29	1,123
07-jul-10	22:00	164.07	1355.293	2963.346	2123.686	1,784.29	1,123
07-jul-10	23:00	164.09	1358.254	2931.159	2125.912	1,784.29	1,123
08-jul-10	00:00	164.11	1360.941	2815.447	2127.929	1,784.29	1,123
08-jul-10	01:00	164.13	1363.133				
	02:00			2659.896	2129.571	1,784.29	1,123
08-jul-10		164.14	1364.772 1365.921	2510.733	2130.798	1,784.29	1,123
08-jul-10	03:00	164.15		2390.265	2131.658	1,784.29	1,123
08-jul-10	05:00	164.15	1366.666 1367.027	2287.328	2132.217	1,784.29	1,123
08-jul-10 08-jul-10	06:00	164.15	1366.968	2178.012	2132.462	1,784.29	1,123
08-jul-10	07:00	164.15	1366.472	1935.158	2132.070	1,784.29	1,123
				1853.889		1,784.29	1,123
08-jul-10	08:00	164.14	1365.618		2131.432	1,784.29	1,123
08-jul-10 08-jul-10	10:00		1364.579	1830.626	2130.653	1,784.29	1,123
	11:00	164.13	1363.543 1362.628	1854.847 1895.893	2129.878 2129.194	1,784.29	1,123
08-jul-10		164.12	1361.839	1923.256	2128.602	1,784.29	1,123
08-jul-10	12:00	164.12				1,784.29	1,123
08-jul-10	13:00	164.11	1361.117	1932.303	2128.061	1,784.29	1,123
08-jul-10	14:00	164.11	1360.424	1938.125	2127.540	1,784.29	1,123
08-jul-10	15:00	164.10		1964.782	2127.065	1,784.29	1,123
08-jul-10	16:00	164.10	1359.301	2017.009	2126.697	1,784.29	
08-jul-10	17:00	164.10	1359.023	2081.542	2126.489	1,784.29	1,123
08-jul-10	18:00	164.10	1358.959	2136.097	2126.441	1,784.29	1,123
08-jul-10	19:00	164.10	1359.050	2167.620	2126.510	1,784.29	1,123
08-jul-10	20:00	164.10	1359.207	2172.379	2126.627	1,784.29	1,123
08-jul-10	21:00	164.10	1359.328	2148.102	2126.718	1,784.29	1,123
08-jul-10	22:00	164.10	1359.305	2092.639	2126.700	1,784.29	1,123
08-jul-10	23:00	164.10	1359.031	2008.375	2126.495	1,784.29	1,123
09-jul-10	00:00	164.09	1358.435	1912.833	2126.048	1,784.29	1,123
09-jul-10	01:00	164.09	1357.513	1826.690	2125.356	1,784.29	1,123
09-jul-10	02:00	164.08	1356.318	1759.344	2124.457	1,784.29	1,123
09-jul-10	03:00	164.07	1354.891	1695.757	2123.383	1,784.29	1,123
09-jul-10	04:00	164.06	1353.196	1607.734	2122.107	1,784.29	1,123
09-jul-10	05:00	164.04	1351.114	1478.364	2120.538	1,784.29	1,123
09-jul-10	06:00	164.03	1348.522	1320.492	2118.481	1,784.29	1,123
09-jul-10 09-jul-10	07:00 08:00	164.00	1345.775 1344.051	1183.300	1911.316 1351.427	1,784.29 1,784.29	1,123

09-jul-10	09:00	163.99	1343.297	1162.312	1351.115	1,784.29	1,123.
09-jul-10	10:00	163.99	1342.829	1279.784	1350.892	1,784.29	1,123.
09-jul-10	11:00	163.99	1342.800	1405.702	1350.878	1,784.29	1,123.
09-jul-10	12:00	163.99	1343.140	1484.958	1351.042	1,784.29	1,123.
09-jul-10	13:00	163.99	1343.659	1505.955	1351.265	1,784.29	1,123.
09-jul-10	14:00	164.00	1344.206	1500.325	1351.491	1,784.29	1,123.
09-jul-10	15:00	164.00	1344.724	1496.891	1357.821	1,784.29	1,123.
09-jul-10	16:00	164.00	1344.986	1502.851	1496.075	1,784.29	1,123.
09-jul-10	17:00	164.00	1345.003	1506.925	1504.652	1,784.29	1,123.
09-jul-10	18:00	164.00	1345.007	1506.916	1506.860	1,784.29	1,123.
09-jul-10	19:00	164.00	1345.006	1505.341	1506.148	1,784.29	1,123
09-jul-10	20:00	164.00	1344.996	1496.254	1500.940	1,784.29	1,123
09-jul-10	21:00	164.00	1344.957	1463.684	1480.529	1,784.29	1,123
09-jul-10	22:00	164.00	1344.867	1400.029	1433.157	1,784.29	1,123
09-jul-10	23:00	164.00	1344.733	1320.891	1362.403	1,784.29	1,123
10-jul-10	00:00	164.00	1344.840	1520.403	1419.091	1,784.29	1,123
10-jul-10	01:00	164.00	1345.174	1679.068	1594.908	1,784.29	1,123
10-jul-10	02:00	164.01	1345.527	1892.949	1780.902	1,784.29	1,123
10-jul-10	03:00	164.01	1345.728	1886.418	1886.776	1,784.29	1,123
10-jul-10	04:00	164.01	1345.530	1672.525	1782.339	1,784.29	1,123
10-jul-10	05:00	164.00	1345.119	1447.005	1565.713	1,784.29	1,123
10-jul-10	06:00	164.00	1344.734	1267.936	1363.035	1,784.29	1,123
10-jul-10	07:00	164.00	1344.220	1161.051	1351.496	1,784.29	1,123
10-jul-10	08:00	163.99	1343.452	1115.010	1351.179	1,784.29	1,123
10-jul-10	09:00	163.99	1342.579	1101.856	1350.771	1,784.29	1,123
10-jul-10	10:00	163.98	1341.680	1099.977	1350.347	1,784.29	1,123
10-jul-10	11:00	163.97	1340.783	1101.857	1349.976	1,784.29	1,123
10-jul-10	12:00	163.97	1339.911	1113.137	1349.583	1,784.29	1,123
10-jul-10	13:00	163.96	1339.124	1148.852	1349.203	1,784.29	1,123
10-jul-10	14:00	163.96	1338.536	1222.158	1348.919	1,784.29	1,123
10-jul-10	15:00	163.96	1338.266	1325.534	1348.788	1,784.29	1,123
10-jul-10	16:00	163.96	1338.355	1421.806	1348.832	1,784.29	1,123
10-jul-10	17:00	163.96	1338.689	1461.686	1348.993	1,784.29	1,123
10-jul-10	18:00	163.96	1339.024	1422.206	1349.155	1,784.29	1,123
10-jul-10	19:00	163.96	1339.114	1326.346	1349.198	1,784.29	1,123
10-jul-10	20:00	163.96	1338.846	1222.976	1349.069	1,784.29	1,123
10-jul-10	21:00	163.96	1338.260	1149.680	1348.786	1,784.29	1,123
10-jul-10	22:00	163.95	1337.477	1112.095	1348.408	1,784.29	1,123
10-jul-10	23:00	163.94	1336.589	1091.425	1348.038	1,784.29	1,123
11-jul-10	00:00	163.94	1335.612	1061.360	1347.605	1,784.29	1,123
11-jul-10	01:00	163.93	1334.478	1003.106	1347.057	1,784.29	1,123
11-jul-10	02:00	163.92	1333.567	1184.345	1346.615	1,784.29	1,123
11-jul-10	03:00	163.92	1332.762	1061.653	1346.250	1,784.29	1,123
11-jul-10	04:00	163.91	1331.502	930.078	1345.714	1,784.29	1,123
11-jul-10	05:00	163.90	1329.800	814.885	1344.918	1,784.29	1,123
11-jul-10	06:00	163.88	1327.757	739.162	1343.995	1,784.29	1,123
11-jul-10	07:00	163.87	1325.533	712.315	1343.941	1,784.29	1,123
11-jul-10	08:00	163.85	1323.295	729.231	1342.941	1,784.29	1,123
11-jul-10	09:00	163.84	1323.275	775.695	1340.922	1,784.29	1,123
11-jul-10	10:00	163.82	1319.256	839.076	1340.922	1,784.29	1,123
11-jul-10	11:00	163.81	1317.569	902.988	1339.232	1,784.29	1,123
11-jul-10	12:00	163.80	1316.074	944.348	1339.232	1,784.29	1,123
11-jul-10	13:00	163.79	1314.655	943.830	1337.908	1,784.29	1,123
11-jul-10	14:00	163.79	1313.166	904.361	1337.179	1,784.29	1,123
11-jul-10	15:00	163.78	1313.166	845.562	1337.179	1,784.29	
11-jul-10	16:00			788.639	1226.184		1,123
		163.76	1309.833			1,784.29	1,123
11-jul-10	17:00	163.75	1308.806	736.004	868.598	1,784.29	1,123
11-jul-10	18:00	163.75	1308.277	677.205	838.709	1,784.29	1,123
11-jul-10	19:00	163.74	1307.573	609.013	838.516	1,784.29	1,123
11-jul-10	20:00	163.74	1306.628	542.703	838.257	1,784.29	1,123
	21:00	163.73	1305.476	493.311	837.942	1,784.29	1,123
11-jul-10	22:00	163.72	1304.187	466.472	837.589	1,784.29	1,123

12-jul-10	00:00	163.70	1301.460	454.139	836.841	1,784.29	1,123.14
12-jul-10	01:00	163.69	1300.082	453.610	836.463	1,784.29	1,123.14
12-jul-10	02:00	163.68	1298.704	453.081	836.085	1,784.29	1,123.14
12-jul-10	03:00	163.67	1297.324	452.552	835.715	1,784.29	1,123.14
12-jul-10	04:00	163.66	1295.945	452.023	835.335	1,784.29	1,123.14
12-jul-10	05:00	163.65	1294.565	451.493	834.956	1,784.29	1,123.14
12-jul-10	06:00	163.64	1293.184	450.963	834.575	1,784.29	1,123.14
12-jul-10	07:00	163.63	1291.803	450.433	834.194	1,784.29	1,123.14
12-jul-10	08:00	163.62	1290.421	449.903	833.813	1,784.29	1,123.14
12-jul-10	09:00	163.61	1289.038	449.373	833.431	1,784.29	1,123.14
12-jul-10	10:00	163.60	1287.656	448.843	833.049	1,784.29	1,123.14
12-jul-10	11:00	163.59	1286.272	448.312	832.667	1,784.29	1,123.14
12-jul-10	12:00	163.58	1284.888	447.782	832.284	1,784.29	1,123.14
12-jul-10	13:00	163.57	1283.504	447.251	831.892	1,784.29	1,123.14
12-jul-10	14:00	163.56	1282.119	447.005	831.507	1,784.29	1,123.14
12-jul-10	15:00	163.55	1280.738	448.189	831.124	1,784.29	1,123.14
12-jul-10	16:00	163.54	1279.366	451.780	830.743	1,784.29	1,123.14
12-jul-10	17:00	163.53	1278.008	454.549	830.366	1,784.29	1,123.14
12-jul-10	18:00	163.52	1276.639	445.178	829.985	1,784.29	1,123.14
12-jul-10	19:00	163.51	1275.191	409.938	829.582	1,784.29	1,123.14
12-jul-10	20:00	163.50	1273.890	349.200	652.308	1,784.29	1,123.14
12-jul-10	21:00	163.50	1272.868	288.300	552.624	1,784.29	1,123.14
12-jul-10	22:00	163.49	1271.878	266.630	552.439	1,784.29	1,123.1
12-jul-10	23:00	163.48	1270.919	305.276	552.254	1,784.29	1,123.14
13-jul-10	00:00	163.48	1270.176	386.137	552.113	1,784.29	1,123.14
13-jul-10	01:00	163.47	1269.721	465.573	552.029	1,784.29	1,123.14
13-jul-10	02:00	163.47	1269.478	503.291	551.984	1,784.29	1,123.1
13-jul-10	03:00	163.47	1269.270	485.230	551.945	1,784.29	1,123.1
13-jul-10	04:00	163.47	1268.920	424.138	551.880	1,784.29	1,123.1
13-jul-10	05:00	163.46	1268.330	351.355			
	06:00				551.770	1,784.29	1,123.1
13-jul-10		163.46	1267.522	303.014	551.619	1,784.29	1,123.1
13-jul-10	07:00	163.45	1266.625	301.951	551.452	1,784.29	1,123.1
13-jul-10	08:00	163.45	1265.812	349.230	551.301	1,784.29	1,123.1
13-jul-10	09:00	163.44	1265.216	422.003	551.190	1,784.29	1,123.1
13-jul-10	10:00	163.44	1264.876	491.584	551.126	1,784.29	1,123.1
13-jul-10	11:00	163.44	1264.747	538.856	551.102	1,784.29	1,123.1
13-jul-10	12:00	163.44	1264.745	562.231	551.102	1,784.29	1,123.1
13-jul-10	13:00	163.44	1264.798	569.675	551.112	1,784.29	1,123.1
13-jul-10	14:00	163.44	1264.867	570.739	551.125	1,784.29	1,123.1
13-jul-10	15:00	163.44	1264.934	568.605	551.137	1,784.29	1,123.1
13-jul-10	16:00	163.44	1264.981	560.090	551.146	1,784.29	1,123.1
13-jul-10	17:00	163.44	1264.972	537.237	551.144	1,784.29	1,123.1
13-jul-10	18:00	163.44	1264.850	496.863	551.121	1,784.29	1,123.1
13-jul-10	19:00	163.44	1264.565	446.929	551.068	1,784.29	1,123.1
13-jul-10	20:00	163.43	1264.113	404.427	550.984	1,784.29	1,123.1
13-jul-10	21:00	163.43	1263.545	381.583	550.878	1,784.29	1,123.1
13-jul-10	22:00	163.43	1262.920	373.079	550.756	1,784.29	1,123.1
13-jul-10	23:00	163.42	1262.266	364.571	550.629	1,784.29	1,123.1
14-jul-10	00:00	163.42	1261.562	345.959	550.498	1,784.29	1,123.1
14-jul-10	01:00	163.41	1260.780	319.915	550.351	1,784.29	1,123.1
14-jul-10	02:00	163.40	1259.895	289.093	550.186	1,784.29	1,123.1
14-jul-10	03:00	163.40	1258.896	256.145	549.999	1,784.29	1,123.1
14-jul-10	04:00	163.39	1257.783	225.331	549.791	1,784.29	1,123.1
14-jul-10	05:00	163.38	1256.582	206.727	549.565	1,784.29	1,123.1
14-jul-10	06:00	163.37	1255.361	214.156	549.328	1,784.29	1,123.1
14-jul-10	07:00	163.36	1254.225	252.915	549.114	1,784.29	1,123.1
14-jul-10	08:00	163.36	1253.270	314.525	548.934	1,784.29	1,123.1
14-jul-10	09:00	163.35	1252.531	372.955	548.796	1,784.29	1,123.1
14-jul-10	10:00	163.35	1251.955	404.306	548.688	1,784.29	1,123.1
14-jul-10	11:00	163.34	1251.434	403.787	548.590	1,784.29	1,123.1
		163.34	1250.894	393.158	548.487	1,784.29	1,123.1
14-jul-10	12:00	103.34	1230.074	0,0.100		.,,	.,
14-jul-10 14-jul-10	13:00	163.33	1250.349	400.580	548.380	1,784.29	1,123.1

14:410	1500	142.22	1240 554	492 224	540 007	1.70 / 00	1 100
14-jul-10	15:00	163.33	1249.556	482.336	548.227	1,784.29	1,123.1
14-jul-10 14-jul-10	17:00	163.33	1249.390	521.628 543.396	548.195 548.185	1,784.29	1,123.1
14-jul-10	18:00	163.33				1,784.29	1,123.1
14-jul-10	19:00	163.33	1249.330	550.825 546.509	548.184 548.184	1,784.29	1,123.1
14-jul-10	20:00	163.33	1249.256	507.883	548.170	1,784.29	1,123.1
14-jul-10	21:00	163.32	1249.256	368.736	548.096	1,784.29	1,123.1
14-jul-10	22:00	163.32	1248.215	368.736	547.974	1,784.29	1,123.
14-jul-10	23:00	163.31	1247.570	368.736	547.853	1,784.29	1,123.
15-jul-10	00:00	163.31	1246.925	368.736	547.731	1,784.29	1,123.
15-jul-10	01:00	163.31	1246.281	368.736	547.605	1,784.29	1,123.
15-jul-10	02:00	163.30	1245.705	406.230	547.492	1,784.29	1,123.
15-jul-10	03:00	163.30	1245.189	402.270	547.394	1,784.29	1,123.
15-jul-10	04:00	163.29	1244.282	188.036	547.223	1,784.29	1,123.
15-jul-10	05:00	163.28	1242.857	114.890	546.954	1,784.29	1,123.
15-jul-10	06:00	163.27	1241.346	139.197	546.659	1,784.29	1,123.
15-jul-10	07:00	163.26	1240.000	197.852	538.330	1,784.29	1,123.
15-jul-10	08:00	163.25	1239.040	250.092	442.766	1,784.29	1,123.
15-jul-10	09:00	163.25	1238.475	287.992	409.586	1,784.29	1,123.
15-jul-10	10:00	163.25	1238.083	313.487	409.529	1,784.29	1,123.
15-jul-10	11:00	163.24	1237.754	322.738	409.481	1,784.29	1,123.
15-jul-10	12:00	163.24	1237.416	308.413	409.432	1,784.29	1,123.
15-jul-10	13:00	163.24	1236.994	276.219	409.370	1,784.29	1,123.
15-jul-10	14:00	163.23	1236.466	248.788	409.294	1,784.29	1,123.
15-jul-10	15:00	163.23	1235.888	248.446	409.209	1,784.29	1,123.
15-jul-10	16:00	163.23	1235.358	275.535	409.132	1,784.29	1,123.
15-jul-10	17:00	163.22	1234.934	307.098	409.070	1,784.29	1,123
15-jul-10	18:00	163.22	1234.595	323.063	409.021	1,784.29	1,123
15-jul-10	19:00	163.22	1234.283	321.167	408.977	1,784.29	1,123.
15-jul-10	20:00	163.22	1233.960	317.663	408.933	1,784.29	1,123
15-jul-10	21:00	163.21	1233.637	320.841	408.888	1,784.29	1,123
15-jul-10	22:00	163.21	1233.323	322.083	408.844	1,784.29	1,123
15-jul-10	23:00	163.21	1232.982	306.119	408.795	1,784.29	1,123
16-jul-10	00:00	163.21	1232.551	272.308	408.732	1,784.29	1,123
16-jul-10	01:00	163.20	1232.000	238.514	408.652	1,784.29	1,123
16-jul-10	02:00	163.20	1231.361	223.854	408.558	1,784.29	1,123
16-jul-10	03:00	163.19	1230.711	231.826	408.463	1,784.29	1,123
16-jul-10	04:00	163.19	1230.106	249.022	408.375	1,784.29	1,123
16-jul-10	05:00	163.18	1229.557	263.028	408.295	1,784.29	1,123
16-jul-10	06:00	163.18	1229.049	271.000	408.220	1,784.29	1,123
16-jul-10	07:00	163.18	1228.569	278.662	408.150	1,784.29	1,123
16-jul-10	08:00	163.17	1228.128	292.705	408.086	1,784.29	1,123
16-jul-10	09:00	163.17	1227.744	310.253	408.029	1,784.29	1,123
16-jul-10	10:00	163.17	1227.406	317.893	407.982	1,784.29	1,123
16-jul-10	11:00	163.17	1227.059	305.125	407.934	1,784.29	1,123
16-jul-10	12:00	163.16	1226.645	280.867	407.876	1,784.29	1,123
16-jul-10	13:00	163.16	1226.182	277.331	407.810	1,784.29	1,123
16-jul-10	14:00	163.16	1225.712	277.331	407.742	1,784.29	1,123
16-jul-10	15:00	163.15	1225.243	277.331	407.673	1,784.29	1,123
16-jul-10	16:00	163.15	1224.774	277.331	407.604	1,784.29	1,123
16-jul-10	17:00	163.15	1224.305	277.331	407.535	1,784.29	1,123
16-jul-10	18:00	163.14	1223.836	277.331	407.466	1,784.29	1,123
16-jul-10	19:00	163.14	1223.368	277.331	407.398	1,784.29	1,123
16-jul-10	20:00	163.13	1222.731	183.264	407.304	1,784.29	1,123
16-jul-10	21:00	163.13	1222.002	226.311	407.197	1,784.29	1,123
16-jul-10	22:00	163.12	1221.391	248.649	407.107	1,784.29	1,123
16-jul-10	23:00	163.12	1220.835	256.638	407.026	1,784.29	1,123
17-jul-10	00:00	163.12	1220.297	258.231	406.946	1,784.29	1,123
17-jul-10	01:00	163.11	1219.761	258.210	406.868	1,784.29	1,123
17-jul-10	02:00	163.11	1219.229	259.773	406.789	1,784.29	1,123
17-jul-10	03:00	163.10	1218.711	266.121 282.042	406.713 406.643	1,784.29	1,123
17-jul-10			1218.234			1,784.29	1,123.

17-jul-10	06:00	163.10	1217.529	337.806	406.544	1,784.29	1,123.14
17-jul-10	07:00	163.09	1217.328	363.306	406.516	1,784.29	1,123.14
17-jul-10	08:00	163.09	1217.201	379.254	406.498	1,784.29	1,123.14
17-jul-10	09:00	163.09	1217.115	385.653	406.486	1,784.29	1,123.14
17-jul-10	10:00	163.09	1217.043	387.277	406.476	1,784.29	1,123.14
17-jul-10	11:00	163.09	1216.974	387.298	406.466	1,784.29	1,123.14
17-jul-10	12:00	163.09	1216.905	387.298	406.457	1,784.29	1,123.14
17-jul-10	13:00	163.09	1216.836	387.277	406.447	1,784.29	1,123.14
17-jul-10	14:00	163.09	1216.766	387.248	406.437	1,784.29	1,123.14
17-jul-10	15:00	163.09	1216.697	387.228	406.426	1,784.29	1,123.14
17-jul-10	16:00	163.09	1216.625	385.634	406.416	1,784.29	1,123.14
17-jul-10	17:00	163.09	1216.539	379.281	406.403	1,784.29	1,123.14
17-jul-10	18:00	163.09	1216.413	363.376	406.384	1,784.29	1,123.14
17-jul-10	19:00	163.09	1216.212	337.902	406.355	1,784.29	1,123.14
17-jul-10	20:00	163.08	1215.909	306.034	406.310	1,784.29	1,123.14
17-jul-10	21:00	163.08	1215.490	274.144	406.248	1,784.29	1,123.14
17-jul-10	22:00	163.08	1214.960	243.839	406.170	1,784.29	1,123.14
17-jul-10	23:00	163.07	1214.330	218.319	406.077	1,784.29	1,123.14
18-jul-10	00:00	163.07	1213.623	200.777	405.973	1,784.29	1,123.14
18-jul-10	01:00	163.06	1212.870	192.805	405.862	1,784.29	1,123.14
18-jul-10	02:00	163.06	1212.092	186.430	405.747	1,784.29	1,123.14
18-jul-10	03:00	163.05	1211.277	172.089	405.626	1,784.29	1,123.14
18-jul-10	04:00	163.04	1210.402	152.968	405.497	1,784.29	1,123.14
18-jul-10	05:00	163.04	1209.476	143.408	405.360	1,784.29	1,123.14
18-jul-10	06:00	163.03	1208.550	152.968	405.223	1,784.29	1,123.14
18-jul-10	07:00	163.02	1207.677	172.089	405.093	1,784.29	1,123.14
18-jul-10	08:00	163.02	1206.864	186.430	404.973	1,784.29	1,123.14
18-jul-10	09:00	163.01	1206.089	192.805	404.858	1,784.29	1,123.14
18-jul-10	10:00	163.01	1205.446	200.777	345.986	1,784.29	1,123.14
18-jul-10	11:00	163.00	1205.027	216.725	304.032	1,784.29	1,123.14
18-jul-10	12:00	163.00	1204.790	235.872	280.268	1,784.29	1,123.14
18-jul-10	13:00	163.00	1204.675	250.243	269.769	1,784.29	1,123.14
18-jul-10	14:00	163.00	1204.616	256.638	269.763	1,784.29	1,123.14
18-jul-10	15:00	163.00	1204.572	258.231	269.758	1,784.29	1,123.14
18-jul-10	16:00	163.00	1204.530	258.210	269.754	1,784.29	1,123.14
18-jul-10	17:00	163.00	1204.489	258.180	269.750	1,784.29	1,123.14
18-jul-10	18:00	163.00	1204.447	258.154	269.745	1,784.29	1,123.14
18-jul-10	19:00	163.00	1204.405	258.140	269.741	1,784.29	1,123.14
18-jul-10	20:00	163.00	1204.364	258.135	269.737	1,784.29	1,123.14
18-jul-10	21:00	163.00	1204.322	258.135	269.732	1,784.29	1,123.14
18-jul-10	22:00	163.00	1204.280	258.140	269.728	1,784.29	1,123.14
18-jul-10	23:00	163.00	1204.238	258.154	269.724	1,784.29	1,123.14
19-jul-10	00:00	163.00	1204.197	258.180	269.719	1,784.29	1,123.14
19-jul-10	01:00	163.00	1204.155	258.210	269.715	1,784.29	1,123.14
19-jul-10	02:00	163.00	1204.114	258.231	269.711	1,784.29	1,123.14
19-jul-10	03:00	163.00	1204.073	258.231	269.706	1,784.29	1,123.14
19-jul-10	04:00	163.00	1204.031	258.210	269.702	1,784.29	1,123.14
19-jul-10	05:00	163.00	1203.990	258.180	269.698	1,784.29	1,123.14
19-jul-10	06:00	163.00	1203.948	258.154	269.693	1,784.29	1,123.14
19-jul-10	07:00	162.99	1203.907	258.140	269.689	1,784.29	1,123.14
19-jul-10	08:00	162.99	1203.865	258.135	269.685	1,784.29	1,123.14
19-jul-10	09:00	162.99	1203.824	258.134	269.680	1,784.29	1,123.14
19-jul-10	10:00	162.99	1203.782	258.134	269.676	1,784.29	1,123.14
19-jul-10	11:00	162.99	1203.741	258.134	269.672	1,784.29	1,123.14
19-jul-10	12:00	162.99	1203.699	258.135	269.667	1,784.29	1,123.14
19-jul-10	13:00	162.99	1203.657	258.140	269.663	1,784.29	1,123.14
19-jul-10	14:00	162.99	1203.616	258.154	269.659	1,784.29	1,123.14
	15:00	162.99	1203.575	258.180	269.655	1,784.29	1,123.14
19-jul-10				258.210	269.650	1 79 4 20	1,123.14
	16:00	162.99	1203.533	236.210	207.030	1,784.29	1,120.1-
19-jul-10	16:00 17:00	162.99 162.99	1203.533	258.231	269.646	1,784.29	
19-jul-10 19-jul-10							1,123.14
19-jul-10 19-jul-10 19-jul-10	17:00	162.99	1203.492	258.231	269.646	1,784.29	1,123.14 1,123.14 1,123.14

19-ju-10 23:00 162.99 1203.150 227.860 289.612 1.784.29 1.123. 20-ju-10 0.000 162.99 1202.609 160.936 289.592 1.784.29 1.123. 20-ju-10 0.100 162.98 1202.169 160.936 289.590 1.784.29 1.123. 20-ju-10 0.300 162.98 1201.753 151.375 269.477 1.784.29 1.123. 20-ju-10 0.400 162.98 1201.350 144.123 269.438 1.784.29 1.123. 20-ju-10 0.500 162.97 1200.570 151.395 269.401 1.784.29 1.123. 20-ju-10 0.500 162.97 1200.570 151.395 269.303 1.784.29 1.123. 20-ju-10 0.600 162.97 1200.570 151.395 269.303 1.784.29 1.123. 20-ju-10 0.700 162.97 1200.570 151.395 269.303 1.784.29 1.123. 20-ju-10 0.700 162.97 1199.692 151.451 269.320 1.784.29 1.123. 20-ju-10 0.900 162.96 1199.692 151.451 269.320 1.784.29 1.123. 20-ju-10 0.900 162.96 1198.936 173.780 269.202 1.784.29 1.123. 20-ju-10 1.100 162.96 1198.936 173.780 269.202 1.784.29 1.123. 20-ju-10 1.100 162.96 1198.936 173.780 269.108 1.784.29 1.123. 20-ju-10 1.100 162.96 1198.936 215.157 269.142 1.784.29 1.123. 20-ju-10 1.100 162.96 1198.937 325.064 269.143 1.784.29 1.123. 20-ju-10 1.100 162.96 1198.937 325.064 269.143 1.784.29 1.123. 20-ju-10 1.400 162.96 1198.802 310.717 269.188 1.784.29 1.123. 20-ju-10 1.500 162.96 1198.802 30.938 269.165 1.784.29 1.123. 20-ju-10 1.500 162.96 1198.808 263.958 269.165 1.784.29 1.123. 20-ju-10 1.500 162.96 1198.808 263.958 269.165 1.784.29 1.123. 20-ju-10 1.500 162.96 1198.808 263.958 269.165 1.784.29 1.123. 20-ju-10 1.500 162.96 1198.802 263.958 269.165 1.784.29	19-jul-10	21:00	162.99	1203.325	256.561	269.629	1,784.29	1,123.1
20- - - -	19-jul-10	22:00	162.99	1203.263	248.580	269.623	1,784.29	1,123.1
20- -10 0.000 16.299 1202.940 194.977 296.9592 1.784.29 1.723. 20- -10 0.200 16.298 1202.189 145.001 296.519 1.784.29 1.723. 20- -10 0.300 16.298 1202.189 145.001 296.519 1.784.29 1.723. 20- -10 0.300 16.298 1201.753 151.375 299.477 1.784.29 1.723. 20- -10 0.500 16.277 1200.771 144.128 296.401 1.784.29 1.723. 20- -10 0.600 16.277 1200.570 131.995 296.383 1.784.29 1.723. 20- -10 0.600 16.277 1200.571 144.128 296.301 1.784.29 1.723. 20- -10 0.600 16.277 1200.5131 143.453 296.320 1.784.29 1.723. 20- -10 0.600 16.276 1199.692 151.451 296.723 1.784.29 1.723. 20- -10 0.600 16.276 1199.692 151.451 296.723 1.784.29 1.723. 20- -10 0.600 16.276 1199.692 151.451 296.723 1.784.29 1.723. 20- -10 0.600 16.276 1199.692 151.451 296.723 1.784.29 1.723. 20- -10 1.000 16.276 1198.936 137.3760 269.022 1.784.29 1.723. 20- -10 1.100 16.276 1198.936 133.319 269.106 1.784.29 1.723. 20- -10 1.100 16.295 1198.381 215.157 269.142 1.784.29 1.723. 20- -10 1.300 16.295 1198.267 272.495 269.132 1.784.29 1.723. 20- -10 1.300 16.296 1198.360 339.400 269.147 1.784.29 1.723. 20- -10 1.500 16.296 1198.802 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.802 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.303 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.301 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.301 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.301 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.301 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.301 310.717 269.186 1.784.29 1.723. 20- -10 1.500 16.296 1198.301 310.717 269.186 1.784.2	19-jul-10	23:00	162.99	1203.150	227.860	269.612	1,784.29	1,123.1
20- - -10 0.100 16.2.99 1202.609 16.0.936 289.500 1.784.29 1.723. 20- - -10 0.300 16.2.98 1201.733 151.375 289.477 1.784.29 1.723. 20- - -10 0.300 16.2.98 1201.733 151.375 289.477 1.784.29 1.723. 20- - -10 0.500 16.2.97 1200.570 144.128 289.401 1.784.29 1.723. 20- - -10 0.500 16.2.97 1200.570 151.395 289.826 1.784.29 1.723. 20- - -10 0.500 16.2.97 1200.570 151.395 289.826 1.784.29 1.723. 20- - -10 0.500 16.2.97 1200.571 151.395 289.826 1.784.29 1.723. 20- - -10 0.500 16.2.96 1199.592 151.451 289.228 1.784.29 1.723. 20- - -10 0.500 16.2.96 1199.592 151.451 289.228 1.784.29 1.723. 20- - -10 0.900 16.2.96 1198.936 173.780 289.202 1.784.29 1.723. 20- - -10 1.000 16.2.96 1198.936 173.780 289.202 1.784.29 1.723. 20- - -10 1.100 16.2.96 1198.936 215.157 289.142 1.784.29 1.723. 20- - -10 1.200 16.2.95 1198.338 215.157 289.142 1.784.29 1.723. 20- - -10 1.300 16.2.95 1198.393 325.044 289.103 1.784.29 1.723. 20- - -10 1.400 16.2.95 1198.980 230.777 289.188 1.784.29 1.723. 20- - -10 1.500 16.2.96 1198.802 310.717 289.188 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 300.777 289.188 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 300.777 289.188 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 20.988 289.195 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 20.988 289.195 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 20.988 289.195 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 20.988 289.195 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 20.988 289.195 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 20.988 289.195 1.784.29 1.723. 20- - -10 1.600 16.2.96 1198.802 20.988 289.195 1.784.29 1.723. 20- - -10 1.600 16.2.	20-jul-10	00:00	162.99	1202.940	194.397	269.592	1,784.29	1,123.1
20- - - -	20-jul-10	01:00	162.99	1202.609	160.936	269.560		1,123.1
20-ph-10 03-00 16.298 1201.753 151.375 299.477 1,784.29 1,123.		02:00						1,123.1
20-jul-10								
20-jul-10								
20-jul-10								
20- u-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20-jul-10								
20- ul-10	20-jul-10	17:00			264.508	269.195		1,123.
20- u-1	20-jul-10	18:00	162.96	1198.782	226.266	269.186	1,784.29	1,123.
20-jul-10	20-jul-10	19:00	162.96	1198.588	203.958	269.165	1,784.29	1,123.
20-jul-10 22:00 162.95 1197.792 194.403 269.084 1,784.29 1,123.	20-jul-10	20:00	162.95	1198.336	194.397	269.139	1,784.29	1,123.
20- u -10	20-jul-10	21:00	162.95	1198.064	192.805	269.111	1,784.29	1,123.
21- u -10	20-jul-10	22:00	162.95	1197.792	194.403	269.084	1,784.29	1,123.
21- u -10		23:00	162.95					
21-jul-10		00:00						
21-jul-10								
21- u -10								
21-jul-10								
21-jul-10								
21-jul-10								
21- u -10								
21- u -10								
21- u -10								
21- u -10								
21- u -10								
21- u -10								
21- u -10								
21-jul-10								
21-jul-10								
21-jul-10	21-jul-10				186.430		1,784.29	1,123.
21-jul-10	21-jul-10						1,784.29	1,123.
21-jul-10	21-jul-10	16:00	162.89	1190.511	248.580	268.357	1,784.29	1,123.
21- u -10	21-jul-10	17:00	162.89	1190.454	256.561	268.352	1,784.29	1,123.
21-jul-10	21-jul-10	18:00	162.89	1190.411	256.586	268.347	1,784.29	1,123.
21-jul-10	21-jul-10	19:00	162.89	1190.355	248.649	268.342	1,784.29	1,123.
21-jul-10	21-jul-10	20:00	162.89	1190.244	226.363	268.331	1,784.29	1,123.
21-jul-10 22:00 162.89 1189.641 138.703 268.272 1,784.29 1,123	21-jul-10	21:00	162.89	1190.021	186.527	268.309		1,123.
21-jul-10 23:00 162.88 1189.114 105.211 268.221 1,784.29 1,123 22-jul-10 00:00 162.88 1188.527 105.186 268.164 1,784.29 1,123 22-jul-10 01:00 162.88 1188.001 138.634 268.108 1,784.29 1,123 22-jul-10 02:00 162.87 1187.621 186.431 268.069 1,784.29 1,123 22-jul-10 03:00 162.87 1187.399 226.266 268.045 1,784.29 1,123 22-jul-10 04:00 162.87 1187.288 248.574 268.034 1,784.29 1,123 22-jul-10 05:00 162.87 1187.233 256.541 268.028 1,784.29 1,123 22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87				1189.641	138.703			1,123.
22-jul-10 00:00 162.88 1188.527 105.186 268.164 1,784.29 1,123 22-jul-10 01:00 162.88 1188.001 138.634 268.108 1,784.29 1,123 22-jul-10 02:00 162.87 1187.621 186.431 268.069 1,784.29 1,123 22-jul-10 03:00 162.87 1187.399 226.266 268.045 1,784.29 1,123 22-jul-10 04:00 162.87 1187.288 248.574 268.034 1,784.29 1,123 22-jul-10 05:00 162.87 1187.233 256.541 268.028 1,784.29 1,123 22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87								1,123.
22-jul-10 01:00 162.88 1188.001 138.634 268.108 1,784.29 1,123 22-jul-10 02:00 162.87 1187.621 186.431 268.069 1,784.29 1,123 22-jul-10 03:00 162.87 1187.399 226.266 268.045 1,784.29 1,123 22-jul-10 04:00 162.87 1187.288 248.574 268.034 1,784.29 1,123 22-jul-10 05:00 162.87 1187.233 256.541 268.028 1,784.29 1,123 22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87								1,123.
22-jul-10 02:00 162.87 1187.621 186.431 268.069 1,784.29 1,123 22-jul-10 03:00 162.87 1187.399 226.266 268.045 1,784.29 1,123 22-jul-10 04:00 162.87 1187.288 248.574 268.034 1,784.29 1,123 22-jul-10 05:00 162.87 1187.233 256.541 268.028 1,784.29 1,123 22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123								
22-jul-10 03:00 162.87 1187.399 226.266 268.045 1,784.29 1,123 22-jul-10 04:00 162.87 1187.288 248.574 268.034 1,784.29 1,123 22-jul-10 05:00 162.87 1187.233 256.541 268.028 1,784.29 1,123 22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123								
22-jul-10 04:00 162.87 1187.288 248.574 268.034 1,784.29 1,123 22-jul-10 05:00 162.87 1187.233 256.541 268.028 1,784.29 1,123 22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123								
22-jul-10 05:00 162.87 1187.233 256.541 268.028 1,784.29 1,123 22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123								
22-jul-10 06:00 162.87 1187.197 259.728 268.025 1,784.29 1,123 22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123								
22-jul-10 07:00 162.87 1187.181 267.695 268.023 1,784.29 1,123 22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123 1187.634 1187.634 1187.634 358.520 268.070 1,784.29 1,123	22-101-10							
22-jul-10 08:00 162.87 1187.220 290.003 268.027 1,784.29 1,123 22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123 1,123 1,123 1,123 1,123								
22-jul-10 09:00 162.87 1187.365 326.651 268.042 1,784.29 1,123 22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123	22-jul-10	. 07.00	162.87	1187.181	267.695	268.023	1,/84.29	1,123.
22-jul-10 10:00 162.87 1187.634 358.520 268.070 1,784.29 1,123	22-jul-10 22-jul-10			1107.000	222 222	010000	1 70 . 00	
	22-jul-10 22-jul-10 22-jul-10	08:00	162.87					
22-jul-10 11:00 162.88 1187.936 345.772 268.102 1,784.29 1,123	22-jul-10 22-jul-10 22-jul-10 22-jul-10	08:00 09:00	162.87 162.87	1187.365	326.651	268.042	1,784.29	1,123. 1,123.

22-jul-10	12:00	162.88	1188.058	258.134	268.114	1,784.29	1,123.
22-jul-10	13:00	162.88	1188.454	498.104	268.156	1,784.29	1,123.
22-jul-10	14:00	162.88	1189.003	343.382	268.210	1,784.29	1,123.
22-jul-10	15:00	162.88	1189.111	252.557	268.221	1,784.29	1,123.
22-jul-10	16:00	162.88	1189.045	247.617	268.214	1,784.29	1,123.
22-jul-10	17:00	162.88	1189.049	290.799	268.215	1,784.29	1,123.
22-jul-10	18:00	162.88	1189.185	321.074	268.228	1,784.29	1,123.
22-jul-10	19:00	162.89	1189.355	309.921	268.245	1,784.29	1,123.
22-jul-10	20:00	162.89	1189.441	274.706	268.253	1,784.29	1,123.
22-jul-10	21:00	162.89	1189.422	250.804	268.251	1,784.29	1,123.
22-jul-10	22:00	162.89	1189.353	247.617	268.244	1,784.29	1,123.
22-jul-10	23:00	162.89	1189.282	249.211	268.237	1,784.29	1,123.
23-jul-10	00:00	162.89	1189.196	239.650	268.229	1,784.29	1,123.
23-jul-10	01:00	162.88	1189.070	226.743	268.217	1,784.29	1,123
23-jul-10	02:00	162.88	1188.921	226.743	268.202	1,784.29	1,123
23-jul-10	03:00	162.88	1188.794	239.491	268.190	1,784.29	1,123
23-jul-10	04:00	162.88	1188.705	247.458	268.181	1,784.29	1,123
23-jul-10	05:00	162.88	1188.616	239.491	268.173	1,784.29	1,123
23-jul-10	06:00	162.88	1188.490	226.584	268.160	1,784.29	1,123
23-jul-10	07:00	162.88	1188.340	226.584	268.144	1,784.29	1,123
23-jul-10	08:00	162.88	1188.214	239.331	268.131	1,784.29	1,123
23-jul-10	09:00	162.88	1188.124	247.298	268.121	1,784.29	1,123
23-jul-10	10:00	162.88	1188.035	239.331	268.112	1,784.29	1,123
	11:00	162.88	1187.911		268.099	1,784.29	1,123
23-jul-10				228.017	268.085		
23-jul-10	12:00	162.87	1187.781	235.984		1,784.29	1,123
23-jul-10	13:00	162.87	1187.729	271.040	268.080	1,784.29	1,123
23-jul-10	14:00	162.87	1187.823	317.248	268.090	1,784.29	1,123
23-jul-10	15:00	162.88	1188.057	349.111	268.114	1,784.29	1,123
23-jul-10	16:00	162.88	1188.348	349.097	268.145	1,784.29	1,123
23-jul-10	17:00	162.88	1188.582	317.203	268.169	1,784.29	1,123
23-jul-10	18:00	162.88	1188.676	270.964	268.178	1,784.29	1,123
23-jul-10	19:00	162.88	1188.625	237.321	268.174	1,784.29	1,123
23-jul-10	20:00	162.88	1188.514	237.321	268.162	1,784.29	1,123
23-jul-10	21:00	162.88	1188.463	270.804	268.157	1,784.29	1,123
23-jul-10	22:00	162.88	1188.559	318.637	268.167	1,784.29	1,123
23-jul-10	23:00	162.88	1188.812	358.498	268.192	1,784.29	1,123
24-jul-10	00:00	162.88	1189.177	380.820	268.227	1,784.29	1,123
24-jul-10	01:00	162.89	1189.594	387.199	268.268	1,784.29	1,123
24-jul-10	02:00	162.89	1190.011	380.826	268.308	1,784.29	1,123
24-jul-10	03:00	162.89	1190.376	358.518	268.344	1,784.29	1,123
24-jul-10	04:00	162.90	1190.629	318.682	268.369	1,784.29	1,123
24-jul-10	05:00	162.90	1190.724	270.880	268.378	1,784.29	1,123
24-jul-10	06:00	162.90	1190.672	237.258	268.373	1,784.29	1,123
24-jul-10	07:00	162.90	1190.560	237.258	268.362	1,784.29	1,123
			1190.508	270.720			
24-jul-10	08:00	162.89			268.357	1,784.29	1,123
24-jul-10	09:00	162.90	1190.603	318.523	268.366	1,784.29	1,123
24-jul-10	10:00	162.90	1190.855	358.358	268.391	1,784.29	1,123
24-jul-10	11:00	162.90	1191.219	380.666	268.426	1,784.29	1,123
24-jul-10	12:00	162.90	1191.637	388.633	268.470	1,784.29	1,123
24-jul-10	13:00	162.91	1192.073	390.227	268.515	1,784.29	1,123
24-jul-10	14:00	162.91	1192.511	390.227	268.561	1,784.29	1,123
24-jul-10	15:00	162.91	1192.949	390.227	268.604	1,784.29	1,123
24-jul-10	16:00	162.92	1193.387	390.227	268.647	1,784.29	1,123
24-jul-10	17:00	162.92	1193.824	390.227	268.689	1,784.29	1,123
24-jul-10	18:00	162.92	1194.262	390.227	268.734	1,784.29	1,123
24-jul-10	19:00	162.93	1194.699	390.227	268.780	1,784.29	1,123
24-jul-10	20:00	162.93	1195.139	391.820	268.826	1,784.29	1,123
24-jul-10	21:00	162.93	1195.596	399.787	268.871	1,784.29	1,123
24-jul-10	22:00	162.94	1196.110	423.689	268.921	1,784.29	1,123
24-101-10	23:00	162.94	1196.753	471.497	268.983	1,784.29	1,123
24-14-10	ZJIUU	102.74	1170./33	7/1.47/	200.703	1,7 04.27	1,123
24-jul-10			1107400	541 422	240.044	1 784 20	1 1 2 2
24-jul-10 25-jul-10 25-jul-10	00:00 01:00	162.95 162.96	1197.608 1198.722	541.622 615.104	269.066 269.179	1,784.29 1,784.29	1,123

25-jul-10	03:00	162.98	1201.470	663.118	269.450	1,784.29	1,123.1
25-jul-10	04:00	162.99	1202.801	615.315	269.578	1,784.29	1,123.1
25-jul-10	05:00	162.99	1203.911	540.402	269.689	1,784.29	1,123.1
25-jul-10	06:00	163.00	1204.735	462.290	274.785	1,784.29	1,123.1
25-jul-10	07:00	163.00	1205.203	393.734	321.628	1,784.29	1,123.1
25-jul-10	08:00	163.01	1205.337	337.930	335.141	1,784.29	1,123.1
25-jul-10	09:00	163.01	1205.295	304.447	330.876	1,784.29	1,123.1
25-jul-10	10:00	163.00	1205.221	309.070	323.503	1,784.29	1,123.1
25-jul-10	11:00	163.00	1205.250	356.903	326.402	1,784.29	1,123.1
25-jul-10	12:00	163.01	1205.446	424.029	345.987	1,784.29	1,123.1
25-jul-10	13:00	163.01	1205.757	471.862	377.157	1,784.29	1,123.1
25-jul-10	14:00	163.01	1206.059	478.240	404.854	1,784.29	1,123.1
25-jul-10	15:00	163.01	1206.277	452.729	404.886	1,784.29	1,123.1
25-jul-10	16:00	163.01	1206.392	420.840	404.903	1,784.29	1,123.1
25-jul-10	17:00	163.01	1206.412	400.113	404.906	1,784.29	1,123.1
25-jul-10	18:00	163.01	1206.381	392.141	404.901	1,784.29	1,123.1
25-jul-10	19:00	163.01	1206.332	390.546	404.894	1,784.29	1,123.1
25-jul-10	20:00	163.01	1206.280	390.546	404.887	1,784.29	1,123.1
25-jul-10	21:00	163.01	1206.229	390.546	404.879	1,784.29	1,123.1
25-jul-10	22:00	163.01	1206.177	390.546	404.871	1,784.29	1,123.1
25-jul-10	23:00	163.01	1206.125	390.546	404.864	1,784.29	1,123.1
26-jul-10	00:00	163.01	1206.074	390.546	404.856	1,784.29	1,123.1
26-jul-10	01:00	163.01	1206.024	390.546	403.963		
	02:00				399.861	1,784.29	1,123.
26-jul-10		163.01	1205.983	390.546		1,784.29	1,123.
26-jul-10	03:00	163.01	1205.955	390.546	397.013	1,784.29	1,123.
26-jul-10	04:00	163.01	1205.935	390.546	395.036	1,784.29	1,123.
26-jul-10	05:00	163.01	1205.921	390.546	393.664	1,784.29	1,123.
26-jul-10	06:00	163.01	1205.912	390.546	392.710	1,784.29	1,123.
26-jul-10	07:00	163.01	1205.905	390.546	392.049	1,784.29	1,123.
26-jul-10	08:00	163.01	1205.901	390.546	391.589	1,784.29	1,123.
26-jul-10	09:00	163.01	1205.897	390.546	391.270	1,784.29	1,123.
26-jul-10	10:00	163.01	1205.895	390.546	391.049	1,784.29	1,123.
26-jul-10	11:00	163.01	1205.894	390.546	390.895	1,784.29	1,123.
26-jul-10	12:00	163.01	1205.893	390.546	390.788	1,784.29	1,123.
26-jul-10	13:00	163.01	1205.889	388.952	390.471	1,784.29	1,123.
26-jul-10	14:00	163.01	1205.873	380.980	388.788	1,784.29	1,123.
26-jul-10	15:00	163.01	1205.815	358.658	382.989	1,784.29	1,123.
26-jul-10	16:00	163.01	1205.680	318.797	369.458	1,784.29	1,123.
26-jul-10	17:00	163.01	1205.452	270.964	346.659	1,784.29	1,123.
26-jul-10	18:00	163.00	1205.170	237.321	318.376	1,784.29	1,123.
26-jul-10	19:00	163.00	1204.923	237.321	293.597	1,784.29	1,123.
26-jul-10	20:00	163.00	1204.800	269.211	281.267	1,784.29	1,123.
	21:00	163.00	1204.824	309.077	283.675		
26-jul-10						1,784.29	1,123.
26-jul-10	22:00	163.00	1204.928	326.629	294.124	1,784.29	1,123.
26-jul-10	23:00	163.00	1205.001	309.116	301.384	1,784.29	1,123.
27-jul-10	00:00	163.00	1204.964	269.285	297.659	1,784.29	1,123.
27-jul-10	01:00	163.00	1204.828	237.258	284.090	1,784.29	1,123.
27-jul-10	02:00	163.00	1204.685	237.258	269.773	1,784.29	1,123.
27-jul-10	03:00	163.00	1204.629	270.720	269.764	1,784.29	1,123.
27-jul-10	04:00	163.00	1204.713	318.523	272.547	1,784.29	1,123.
27-jul-10	05:00	163.00	1204.914	358.358	292.691	1,784.29	1,123.
27-jul-10	06:00	163.00	1205.148	380.666	316.176	1,784.29	1,123.
27-jul-10	07:00	163.01	1205.357	388.633	337.109	1,784.29	1,123.
27-jul-10	08:00	163.01	1205.517	390.227	353.104	1,784.29	1,123.
27-jul-10	09:00	163.01	1205.627	388.633	364.209	1,784.29	1,123.
27-jul-10	10:00	163.01	1205.690	380.666	370.458	1,784.29	1,123.
27-jul-10	11:00	163.01	1205.687	358.358	370.169	1,784.29	1,123.
	12:00	163.01	1205.590	318.523	360.469		
27-jul-10			1205.389			1,784.29	1,123.
27-jul-10	13:00	163.01		270.720	340.339	1,784.29	1,123.
27-jul-10	14:00	163.00	1205.123	235.505	313.673	1,784.29	1,123.
27-jul-10	15:00	163.00	1204.873	227.538	288.559	1,784.29	1,123.
27-jul-10	16:00	163.00	1204.704	238.692	271.609	1,784.29	1,123.
27-jul-10	17:00	163.00	1204.603	246.659	269.761	1,784.29	1,123.

27 54 10	10.00	163.00	1204 505	220 402	240.751	1 70 4 20	1 102 1
27-jul-10	18:00		1204.505	238.692	269.751	1,784.29	1,123.1
27-jul-10	19:00	163.00	1204.373	227.378	269.738 269.723	1,784.29	1,123.1
27-jul-10	21:00	163.00	1204.233	270.400	269.717	1,784.29	1,123.1
27-jul-10	22:00	163.00	1204.174	318.203	269.726	1,784.29	1,123.1
27-jul-10 27-jul-10	23:00	163.00	1204.509	358.038	269.752	1,784.29	1,123.1
28-jul-10	00:00	163.00	1204.837	378.752	284.956	1,784.29	1,123.
28-jul-10	01:00	163.00	1205.123	378.747	313.630	1,784.29	1,123.1
28-jul-10	02:00	163.00	1205.290	358.018	330.368	1,784.29	1,123.
28-jul-10	03:00	163.01	1205.313	318.157	332.728	1,784.29	1,123.
28-jul-10	04:00	163.00	1205.196	270.324	320.962	1,784.29	1,123.
28-jul-10	05:00	163.00	1204.988	235.088	300.096	1,784.29	1,123.
28-jul-10	06:00	163.00	1204.777	227.121	279.004	1,784.29	1,123.
28-jul-10	07:00	163.00	1204.627	238.296	269.764	1,784.29	1,123.
28-jul-10	08:00	163.00	1204.529	246.293	269.754	1,784.29	1,123.
28-jul-10	09:00	163.00	1204.430	238.351	269.743	1,784.29	1,123.
28-jul-10	10:00	163.00	1204.296	227.052	269.730	1,784.29	1,123.
28-jul-10	11:00	163.00	1204.154	233.430	269.715	1,784.29	1,123.
28-jul-10	12:00	163.00	1204.073	260.519	269.706	1,784.29	1,123.
28-jul-10	13:00	163.00	1204.085	286.014	269.708	1,784.29	1,123.
28-jul-10	14:00	163.00	1204.144	286.014	269.714	1,784.29	1,123.
28-jul-10	15:00	163.00	1204.157	260.519	269.715	1,784.29	1,123.
28-jul-10	16:00	163.00	1204.075	233.271	269.707	1,784.29	1,123.
28-jul-10	17:00	162.99	1203.932	226.897	269.692	1,784.29	1,123.
28-jul-10	18:00	162.99	1203.798	238.051	269.678	1,784.29	1,123.
28-jul-10	19:00	162.99	1203.699	246.019	269.667	1,784.29	1,123.
28-jul-10	20:00	162.99	1203.596	236.458	269.657	1,784.29	1,123.
28-jul-10	21:00	162.99	1203.442	217.177	269.641	1,784.29	1,123.
28-jul-10	22:00	162.99	1203.227	202.836	269.619	1,784.29	1,123.
28-jul-10	23:00	162.99	1202.978	198.056	269.595	1,784.29	1,123.
29-jul-10	00:00	162.99	1202.721	198.056	269.570	1,784.29	1,123.
29-jul-10	01:00	162.98	1202.472	202.675	269.546	1,784.29	1,123.
29-jul-10	02:00	162.98	1202.257	217.010	269.526	1,784.29	1,123.
29-jul-10	03:00	162.98	1202.102	236.117	269.511	1,784.29	1,123.
29-jul-10	04:00	162.98	1201.996	244.059	269.500	1,784.29	1,123.
29-jul-10	05:00	162.98	1202.130	368.899	269.513	1,784.29	1,123.
29-jul-10	06:00	162.98	1202.424	333.606	269.542	1,784.29	1,123.
29-jul-10	07:00	162.98	1202.583	293.770	269.557	1,784.29	1,123.
29-jul-10	08:00	162.99	1202.604	257.143	269.559	1,784.29	1,123.
29-jul-10	09:00	162.98	1202.499	223.494	269.549	1,784.29	1,123.
29-jul-10	10:00	162.98	1202.276	191.650	269.527	1,784.29	1,123.
29-jul-10	11:00	162.98	1201.983	185.038	269.499	1,784.29	1,123.
29-jul-10	12:00	162.98	1201.679	185.038	269.470	1,784.29	1,123.
29-jul-10	13:00	162.98	1201.375	185.038	269.440	1,784.29	1,123.
29-jul-10	14:00	162.97	1201.072	185.038	269.411	1,784.29	1,123.
29-jul-10	15:00	162.97	1200.768	185.038	269.382	1,784.29	1,123.
29-jul-10	16:00	162.97	1200.464	185.038	269.352	1,784.29	1,123.
29-jul-10	17:00	162.97	1200.161	185.038	269.323	1,784.29	1,123.
29-jul-10	18:00	162.96	1199.858	185.038	269.294	1,784.29	1,123.
29-jul-10	19:00	162.96	1199.554	185.038	269.264	1,784.29	1,123.
29-jul-10	20:00	162.96	1199.251	185.038	269.235	1,784.29	1,123.
29-jul-10	21:00	162.96	1198.948	185.038	269.203	1,784.29	1,123.
29-jul-10	22:00	162.96	1198.645	185.038	269.171	1,784.29	1,123.
29-jul-10	23:00	162.95	1198.342	185.038	269.140	1,784.29	1,123.
30-jul-10	00:00	162.95	1198.040	185.038	269.108	1,784.29	1,123.
30-jul-10	01:00	162.95	1197.737	185.038	269.078	1,784.29	1,123.
30-jul-10	02:00	162.95	1197.434	185.038	269.049	1,784.29	1,123.
30-jul-10	03:00	162.94	1197.132	185.038	269.020	1,784.29	1,123.
30-jul-10	04:00	162.94	1196.830	185.038	268.991	1,784.29	1,123.
30-jul-10	05:00	162.94	1196.528	185.038	268.961	1,784.29	1,123.
30-jul-10	06:00	162.94	1196.226	185.038	268.932	1,784.29	1,123.
30-jul-10	07:00	162.94	1195.924	185.038	268.903	1,784.29	1,123.
		162.93	1195.622	185.038	268.874	1,784.29	1,123.

30-jul-10	09:00	162.93	1195.320	185.038	268.844	1,784.29	1,123.1
30-jul-10	10:00	162.93	1195.018	185.038	268.813	1,784.29	1,123.1
30-jul-10	11:00	162.93	1194.717	185.038	268.782	1,784.29	1,123.1
30-jul-10	12:00	162.92	1194.415	185.038	268.750	1,784.29	1,123.1
30-jul-10	13:00	162.92	1194.114	185.038	268.719	1,784.29	1,123.1
30-jul-10	14:00	162.92	1193.813	185.038	268.688	1,784.29	1,123.1
30-jul-10	15:00	162.92	1193.512	185.038	268.659	1,784.29	1,123.1
30-jul-10	16:00	162.92	1193.211	185.038	268.629	1,784.29	1,123.1
30-jul-10	17:00	162.91	1192.910	185.038	268.600	1,784.29	1,123.
30-jul-10	18:00	162.91	1192.609	185.038	268.571	1,784.29	1,123.
30-jul-10	19:00	162.91	1192.308	185.038	268.540	1,784.29	1,123.
30-jul-10	20:00	162.91	1192.008	185.038	268.508	1,784.29	1,123.
30-jul-10	21:00	162.90	1191.707	185.038	268.477	1,784.29	1,123.
30-jul-10	22:00	162.90	1191.407	185.038	268.445	1,784.29	1,123.
30-jul-10	23:00	162.90	1191.107	185.038	268.415	1,784.29	1,123.
31-jul-10	00:00	162.90	1190.807	185.038	268.386	1,784.29	1,123.
	01:00						
31-jul-10		162.89	1190.507	185.038	268.357	1,784.29	1,123.
31-jul-10	02:00	162.89	1190.207	185.038	268.328	1,784.29	1,123.
31-jul-10	03:00	162.89	1189.907	185.038	268.298	1,784.29	1,123.
31-jul-10	04:00	162.89	1189.607	185.038	268.269	1,784.29	1,123.
31-jul-10	05:00	162.89	1189.308	185.038	268.240	1,784.29	1,123.
31-jul-10	06:00	162.88	1189.008	185.038	268.211	1,784.29	1,123.
31-jul-10	07:00	162.88	1188.709	185.038	268.182	1,784.29	1,123.
31-jul-10	08:00	162.88	1188.410	185.038	268.151	1,784.29	1,123.
31-jul-10	09:00	162.88	1188.111	185.038	268.120	1,784.29	1,123.
31-jul-10	10:00	162.87	1187.812	185.038	268.089	1,784.29	1,123.
31-jul-10	11:00	162.87	1187.513	185.038	268.057	1,784.29	1,123.
31-jul-10	12:00	162.87	1187.214	185.038	268.026	1,784.29	1,123.
31-jul-10	13:00	162.87	1186.915	185.038	267.997	1,784.29	1,123.
31-jul-10	14:00	162.87	1186.617	185.038	267.968	1,784.29	1,123.
31-jul-10	15:00	162.86	1186.318	185.038	267.939	1,784.29	1,123.
31-jul-10	16:00	162.86	1186.020	185.038	267.910	1,784.29	1,123.
31-jul-10	17:00	162.86	1185.721	185.038	267.881	1,784.29	1,123.
31-jul-10	18:00	162.86	1185.423	185.038	267.852	1,784.29	1,123.
31-jul-10	19:00	162.85	1185.125	185.038	267.822	1,784.29	1,123.
31-jul-10	20:00	162.85	1184.827	185.038	267.793	1,784.29	1,123.
31-jul-10	21:00	162.85	1184.529	185.038	267.764	1,784.29	1,123.
31-jul-10	22:00	162.85	1184.232	185.038	267.733		
						1,784.29	1,123.
31-jul-10	23:00	162.85	1183.934	185.038	267.701	1,784.29	1,123.
01-ago-10	00:00	162.84	1183.636	185.038	267.670	1,784.29	1,123.
01-ago-10	01:00	162.84	1183.339	185.038	267.639	1,784.29	1,123.
01-ago-10	02:00	162.84	1183.042	185.038	267.609	1,784.29	1,123.
01-ago-10	03:00	162.84	1182.744	185.038	267.580	1,784.29	1,123.
01-ago-10	04:00	162.83	1182.447	185.038	267.551	1,784.29	1,123.
01-ago-10	05:00	162.83	1182.150	185.038	267.522	1,784.29	1,123.
01-ago-10	06:00	162.83	1181.853	185.038	267.492	1,784.29	1,123.
01-ago-10	07:00	162.83	1181.557	185.038	267.461	1,784.29	1,123.
01-ago-10	08:00	162.83	1181.260	185.038	267.430	1,784.29	1,123.
01-ago-10	09:00	162.82	1180.963	185.038	267.399	1,784.29	1,123.
01-ago-10	10:00	162.82	1180.667	185.038	267.367	1,784.29	1,123.
01-ago-10	11:00	162.82	1180.371	185.038	267.338	1,784.29	1,123.
01-ago-10	12:00	162.82	1180.074	185.038	267.309	1,784.29	1,123
01-ago-10	13:00	162.81	1179.778	185.038	267.280	1,784.29	1,123
01-ago-10	14:00	162.81	1179.482	185.038	267.251	1,784.29	1,123.
01-ago-10	15:00	162.81	1179.186	185.038	267.222	1,784.29	1,123.
01-ago-10	16:00	162.81	1178.891	185.038	267.193	1,784.29	1,123.
01-ago-10	17:00	162.81	1178.595	185.038	267.164	1,784.29	1,123.
01-ago-10	18:00	162.80	1178.299	185.038	267.135	1,784.29	1,123.
		162.80					-
01-ago-10	19:00		1178.004	185.038	267.106	1,784.29	1,123.
01-ago-10	20:00	162.80	1177.708	185.038	267.076	1,784.29	1,123.
01 .0				185.038	267.044	1,784.29	1,123.
01-ago-10 01-ago-10	21:00	162.80 162.79	1177.413	185.038	267.013	1,784.29	1,123.

02-ago-10	00:00	162.79	1176.528	185.038	266.952	1,784.29	1,123.1
02-ago-10	01:00	162.79	1176.233	185.038	266.923	1,784.29	1,123.1
02-ago-10	02:00	162.79	1175.938	185.038	266.894	1,784.29	1,123.1
02-ago-10	03:00	162.78	1175.644	185.038	266.865	1,784.29	1,123.1
02-ago-10	04:00	162.78	1175.349	185.038	266.836	1,784.29	1,123.1
02-ago-10	05:00	162.78	1175.055	185.038	266.805	1,784.29	1,123.1
02-ago-10	06:00	162.78	1174.760	185.038	266.774	1,784.29	1,123.1
02-ago-10	07:00	162.77	1174.466	185.038	266.743	1,784.29	1,123.
02-ago-10	08:00	162.77	1174.172	185.038	266.712	1,784.29	1,123.
02-ago-10	09:00	162.77	1173.878	185.038	266.681	1,784.29	1,123.
02-ago-10	10:00	162.77	1173.584	185.038	266.653	1,784.29	1,123.
02-ago-10	11:00	162.77	1173.291	185.038	266.624	1,784.29	1,123.
02-ago-10	12:00	162.76	1172.997	185.038	266.595	1,784.29	1,123.
02-ago-10	13:00	162.76	1172.703	185.038	266.566	1,784.29	1,123.
02-ago-10	14:00	162.76	1172.429	185.038	256.225	1,784.29	1,123.
02-ago-10	15:00	162.76	1172.193	185.038	244.761	1,784.29	1,123.
02-ago-10	16:00	162.76	1171.995	185.038	235.144	1,784.29	1,123.
02-ago-10	17:00	162.75	1171.829	185.038	227.075	1,784.29	1,123.
02-ago-10	18:00	162.75	1171.690	185.038	220.305	1,784.29	1,123.
02-ago-10	19:00	162.75	1171.573	185.038	214.626	1,784.29	1,123.
02-ago-10	20:00	162.75	1171.476	185.038	209.861	1,784.29	1,123.
02-ago-10	21:00	162.75	1171.393	185.038	205.864	1,784.29	1,123.
02-ago-10	22:00	162.75	1171.324	185.038	202.510	1,784.29	1,123.
02-ago-10	23:00	162.75	1171.262	185.038	202.276	1,784.29	1,123.
03-ago-10	00:00	162.75	1171.200	185.038	202.271	1,784.29	1,123.
03-ago-10	01:00	162.75	1171.138	185.038	202.266	1,784.29	1,123.
03-ago-10	02:00	162.75	1171.076	185.038	202.262	1,784.29	1,123.
03-ago-10	03:00	162.75	1171.014	185.038	202.257	1,784.29	1,123.
03-ago-10	04:00	162.75	1170.952	185.038	202.252	1,784.29	1,123.
03-ago-10	05:00	162.75	1170.890	185.038	202.247	1,784.29	1,123.
03-ago-10	06:00	162.75	1170.828	185.038	202.243	1,784.29	1,123.
03-ago-10	07:00	162.75	1170.766	185.038	202.238	1,784.29	1,123.
03-ago-10	08:00	162.75	1170.704	185.038	202.233	1,784.29	1,123.
03-ago-10	09:00	162.75	1170.642	185.038	202.229	1,784.29	1,123.
03-ago-10	10:00	162.74	1170.580	185.038	202.224	1,784.29	1,123.
03-ago-10	11:00	162.74	1170.518	185.038	202.219	1,784.29	1,123.
03-ago-10	12:00	162.74	1170.449	180.580	202.214	1,784.29	1,123.
03-ago-10	13:00	162.74	1170.371	180.580	202.208	1,784.29	1,123.
03-ago-10	14:00	162.74	1170.293	180.580	202.202	1,784.29	1,123.
03-ago-10	15:00	162.74	1170.215	180.580	202.196	1,784.29	1,123.
03-ago-10	16:00	162.74	1170.137	180.580	202.190	1,784.29	1,123.
03-ago-10	17:00	162.74	1170.059	180.580	202.185	1,784.29	1,123.
03-ago-10	18:00	162.74	1169.982	180.580	202.179	1,784.29	1,123.
03-ago-10	19:00	162.74	1169.904	180.580	202.173	1,784.29	1,123.
03-ago-10	20:00	162.74	1169.826	180.580	202.167	1,784.29	1,123.
03-ago-10	21:00	162.74	1169.749	180.580	202.161	1,784.29	1,123.
03-ago-10	22:00	162.74	1169.671	180.580	202.155	1,784.29	1,123.
03-ago-10	23:00	162.74	1169.593	180.580	202.149	1,784.29	1,123.
04-ago-10	00:00	162.74	1169.516	180.580	202.143	1,784.29	1,123.
04-ago-10	01:00	162.74	1169.438	180.580	202.137	1,784.29	1,123.
04-ago-10	02:00	162.74	1169.360	180.580	202.132	1,784.29	1,123.
04-ago-10	03:00	162.74	1169.283	180.580	202.126	1,784.29	1,123.
04-ago-10	04:00	162.73	1169.205	180.580	202.120	1,784.29	1,123.
04-ago-10	05:00	162.73	1169.128	180.580	202.114	1,784.29	1,123.
J-T-ugu-10	06:00	, 52.7 5		. 55.555	2021117	1,784.29	,,,,,,

Tabla 37.- Resultados del cálculo del tránsito de la avenida asociada a un Tr= 10 000 años.

Para complementar la información de la revisión hidrológica de esta presa los resultados de los tránsitos de las avenidas asociadas a 1000, 500 y 50 años.

Los resultados obtenidos con el tránsito de la avenida asociada a 1000 años son los siguientes: El volumen transitado es de 2 086 936.35 miles de metros cúbicos, el volumen desalojado es de 2 070 305.54 miles de metros cúbicos, el gasto máximo de entrada es de 10 016.25 m³/s, el gasto máximo extraído es de 7 767.62 m³/s, el almacenamiento máximo alcanzado es de 1, 536 930.89 miles de metros cúbicos correspondiendo a una elevación de 165.25 msnm. Figuras 81 y 82.

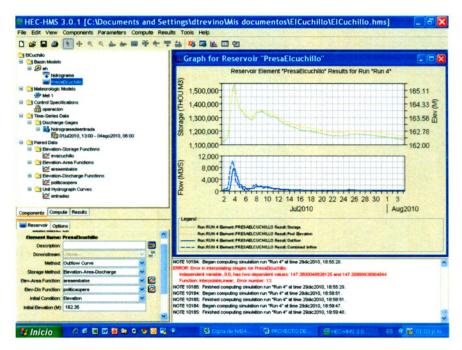


Figura 81.-Resultados del tránsito de la avenida asociada a un Tr= 1000 años.

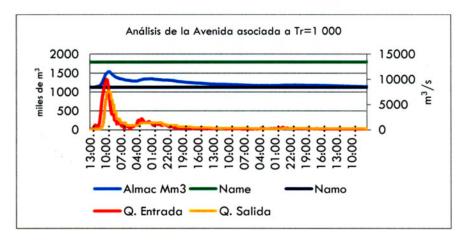


Figura 82.- Tránsito de la avenida asociada a un Tr=1000 años, a partir del NAMO.

Los resultados obtenidos con el tránsito de la avenida asociada a un Tr= 500 años son los siguientes: El volumen transitado es de 1 862 604.55 miles de metros cúbicos, el volumen desalojado es de 1, 859,137.89 miles de metros cúbicos, el gasto máximo de entrada es de 8 939.57 m³/s, el gasto máximo extraído es de 7 353.10 m³/s, el almacenamiento máximo alcanzado es de 1, 504,869.53 miles de metros cúbicos correspondiendo a una elevación de 165.05 msnm. Figuras 83 y 84.

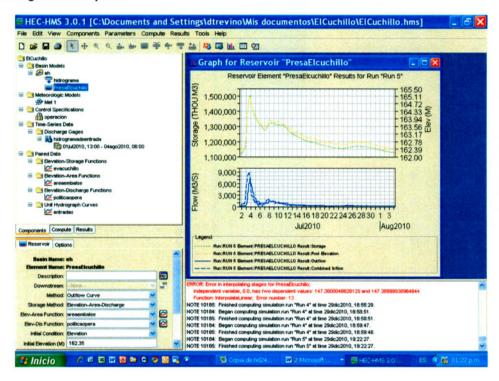


Figura 83.-Resultados del tránsito de la avenida asociada a un Tr=500 años.

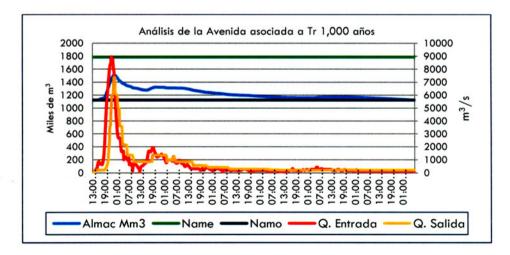


Figura 84.- Tránsito de la avenida asociada a un Tr= 500 años, a partir del NAMO.

Los resultados obtenidos con el tránsito de la avenida asociada a un Tr= 50 años son los siguientes: El volumen transitado es de 1 113 385.78 miles de metros cúbicos, el volumen desalojado es de, 1 051105.24 miles de metros cúbicos, el gasto máximo de entrada es de 5 299.57 m³/s, el gasto máximo extraído es de 4 251.78 m³/s, el almacenamiento máximo alcanzado es de 1 419 685.70 miles de metros cúbicos correspondiendo a una elevación de 164.50 msnm. Figuras 85 y 86.

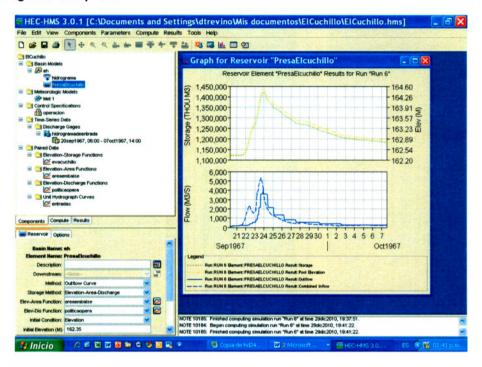


Figura 85.-Resultados del tránsito de la avenida asociada a un Tr= 50 años.

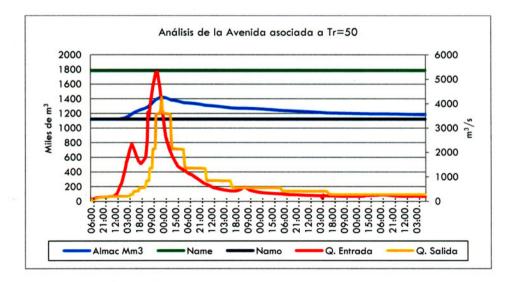


Figura 86.- Tránsito de la avenida asociada a un Tr=50 años, a partir del NAMO.

Las políticas de operación del vertedor de la presa El Cuchillo-Solidaridad, se basan en la apertura de las 7 compuertas del vertedor con una descarga máxima de 10 676.809 m³/s Figura 87.

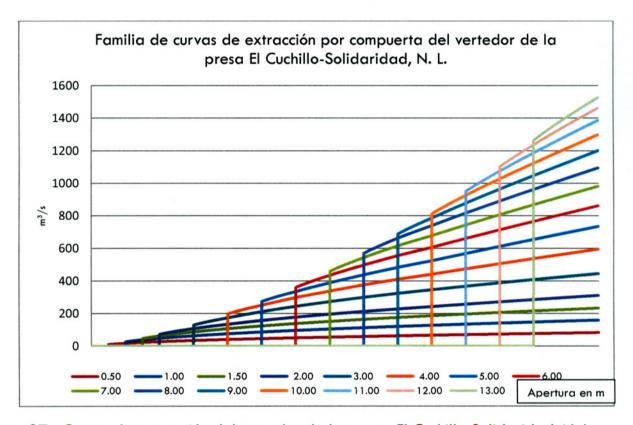


Figura 87.- Curvas de extracción del vertedor de la presa El Cuchillo-Solidaridad, N. L.

Capítulo 5

CONCLUSIONES Y RECOMENDACIONES

5.1.- Presa Rodrigo Gómez La Boca

Con base en los análisis efectuados para llevar a cabo la revisión hidrológica de la presa La Boca, se concluye que esta presa es segura desde el punto de vista hidrológico, ya que al haber transitado el volumen producto del hidrograma asociado a las lluvias máximas en 24 horas estimadas para un Tr=10 000 años, en el vaso de la presa y mediante la aplicación de las políticas de operación del vertedor, iniciando la simulación a partir del nivel al que se encuentra el NAMO, el volumen transitado no rebasa la capacidad al nivel de aguas máximas extraordinarias de esta presa ni se rebasa la capacidad máxima de descarga del vertedor.

Por lo anterior, las características de esta presa no cambian de tal manera que el nivel y volumen asignado al NAMO son de 448.54 msnm y 39.490 Mm³; para el NAME son de 449.20 msnm y 42.628 Mm³.

Sin embargo, la problemática subsiste en la operación en si del vertedor ya que si se llegase a presentar las lluvias asociadas a la avenida de 10 000 años, aunque el vertedor tiene la suficiente capacidad para descargar el volumen de agua que ingrese, se requiere de contar con el personal suficiente y capacitado en la cortina de esta presa para poder realizar las aperturas de compuertas necesarias y en el tiempo suficiente para que se pueda ir desalojando el volumen de agua que vaya ingresando, esto por la forma y pendiente de la cuenca la cual por sus características fisiográficas hace que el tiempo de concentración sea muy reducido y si no se toma en cuenta esta importante variable entonces no se tendría el tiempo suficiente para asegurar la correcta operación del vertedor.

Desde el punto de vista hidrológico el diseño de las capacidades de la presa La Boca proporcionan la seguridad necesaria siempre y cuando las variables asociadas a la operación del vertedor estén resueltas satisfactoriamente, sin embargo, si se llegase a presentar esta avenida, la descarga que se produciría no se podría contener en la capacidad hidráulica del río San Juan el cual presenta una capacidad sin desbordarse del orden de los 560 m³/s. de tal manera que si esto llega a ocurrir el plano de inundación provocado por la descarga del volumen sería de dimensiones catastróficas por la población que se localiza aguas abajo.

Parte de los motivos que dieron origen a realizar este trabajo son los llenados rápidos que se generan en esta presa producto de lluvias asociadas a tormentas severas y frentes fríos de tal manera que se propuso ante el seno del CTOOH y se obtuvo su autorización para manejar la presa La Boca en un nivel de almacenamiento de 35 Mm³ como máximo durante la temporada de lluvias definida entre los meses de junio a octubre, ya que aunque los resultados de la revisión hidrológica efectuados demuestra que la presa es segura para 10 000 años de período de retorno, en la práctica lo que limita la correcta operación es la falta de información a tiempo real de las precipitaciones que se producen en la cuenca, esto ocasiona que no se cuente con el

tiempo suficiente para operar el vertedor y poder dar un uso eficiente a la capacidad para control de avenidas, razón por la cual el CTOOH autorizó al OCRB para manejar durante los meses de junio a octubre un NAMO temporal de 35 Mm³, esto con el objetivo de aumentar la capacidad para el control de las avenidas y realizar descargas controladas que no rebasen la capacidad del río aguas abajo de la presa, además de contar con el tiempo suficiente para hacer llegar el personal capacitado para la operación del vertedor desde la ciudad de Monterrey.

Por lo anterior, parte del trabajo planteado es proponer un manual de operación de la presa La Boca ante los efectos de fenómenos hidrometeorológicos extremos.

5.1.1.- Manual de operación de la presa La Boca ante la influencia de fenómenos hidrometeorológicos extremos.

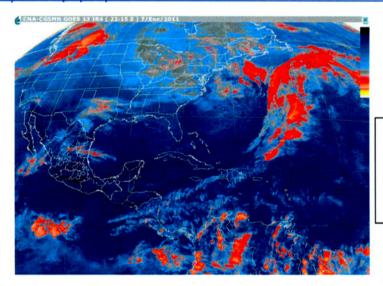
En virtud del tamaño de la cuenca de la presa de La Boca, del microclima que allí existe, de los llenados rápidos que se han presentado y que a pesar de que la presa es segura inclusive para la avenida asociada a un Tr=10 000 años, la operación de las compuertas del vertedor es lo que hace que se produzcan problemas por el tiempo tan corto que existe entre la ocurrencia de las lluvias y el llenado de la presa, es por ello que se propone un Manual de operación bajo las siguientes condiciones:

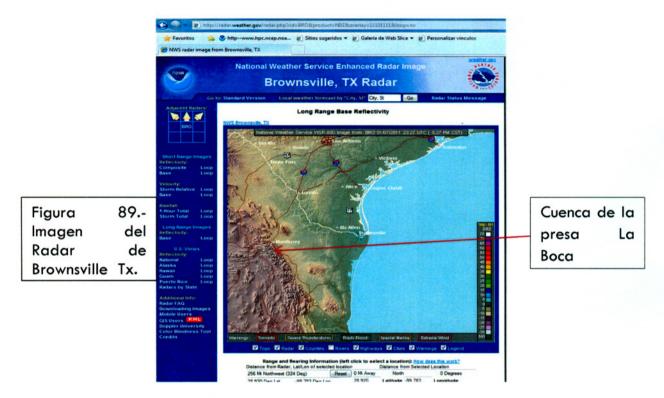
Manual de operación de la presa La Boca ante la influencia de fenómenos hidrometeorológicos extremos.

- 1.-Establecer el seguimiento diario de los niveles y almacenamientos de la presa La Boca durante todos los días del año
- 2.-Durante el período de junio a octubre de cada año, mantener el nivel de almacenamiento por debajo de los 35 Mm³, en el resto del año, se podrá manejar el nivel de almacenamiento hasta el NAMO inclusive dejar oscilar el almacenamiento entre el NAMO y NAME en los meses de noviembre a marzo siempre que las lluvias en la cuenca de esta presa se presenten por debajo de la media, en los meses de abril a mayo se deberá mantener el nivel de almacenamiento por debajo del NAMO.
- 3.-Antes de la temporada de lluvias de cada año, se deberá verificar el buen funcionamiento del sistema electromecánico de las 10 compuertas radiales del vertedor así como de la Obra de Toma Baja.
- 4.- Verificar el buen funcionamiento del sistema de telecomunicaciones entre la presa y la oficina de la Comisión Nacional del Agua en Monterrey encargada de la operación de la presa, en específico el sistema de radiocomunicación y el sistema de comunicación telefónica IP.
- 5.- Tener a la mano las tablas de elevaciones-áreas-capacidades de los estudios más recientes.
- 6.- Tener a la mano las tablas de descarga de las compuertas radiales y de la Obra de Toma Baja con toda la familia de curvas de descarga.

- 7.- En la temporada de lluvias se debe establecer una vigilancia permanente desde el punto de vista meteorológico con el objetivo de estar preparados ante la presencia de fenómenos hidrometeorológicos extremos locales como tormentas severas provocadas por celdas convectivas y los frentes fríos principalmente los que se presentan de los meses de septiembre a noviembre de cada año.
- 8.- La información meteorológica que se debe revisar de manera constante durante la temporada de lluvias, se puede consultar en diferentes fuentes iniciando por las imágenes de satélite en los canales infrarrojo y visible que difunde el Servicio Meteorológico Nacional, esta información se puede consultar en liga siguiente:

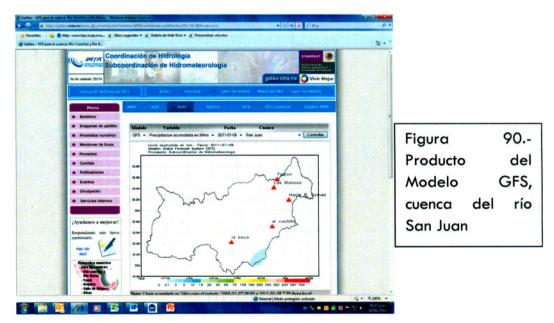
http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=10&Itemid=8




Figura 88.-Imagen de satélite del canal infrarrojo

8.1.-Otra fuente de información muy confiable son las imágenes del radar de Brownsville, Texas que tiene un alcance suficiente para monitorear la cuenca de la presa La Boca, esta información se puede consultar en la liga siguiente:

http://radar.weather.gov/radar.php?rid=BRO&product=N0Z&overlay=11101111&loop=no



8.2.-Otra fuente de información muy confiable son los productos del Modelo Numérico GFS para la cuenca del río San Juan desarrollados por el IMTA, esta información se puede consultar en la liga siguiente:

 $http://galileo.imta.mx/pron_gfs_noreste2.php?modelo=GFS\&variable=pacu24\&fecha=2011-01-08\&cuenca=sj$

8.3.-Otra fuente de información muy confiable son los productos del Modelo Numérico WRF para el noreste del país desarrollados por el IMTA, esta información se puede consultar en la liga siguiente:

http://galileo.imta.mx/simuwrf_sub.php?region=nr1&variable=rrb6&nivel=su&hora=06&button = Consultar

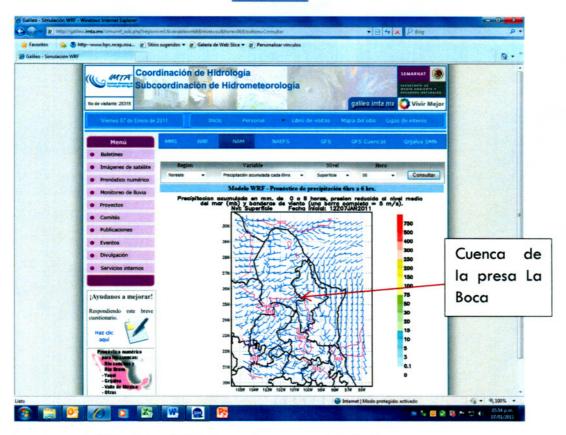


Figura 91.- Producto del Modelo WRF, para el noreste de México.

9.-Una vez que se presente una situación hidrometeorológica adversa con base en el pronóstico a muy corto plazo obtenido de las fuentes de información antes señaladas, se deberá establecer contacto con el personal de la presa La Boca compuesto por un presero y por un guardia de PIAE, esto con la finalidad de iniciar con las observaciones y registros de los niveles y almacenamientos de manera horaria los cuales serán transmitidos a la oficina en Monterrey de la CONAGUA para su registro y análisis para la toma de decisiones.

10.- Si el volumen de almacenamiento al iniciar la lluvia en la cuenca de la presa La Boca está por arriba de 35 Mm³, se deberá iniciar descargas por el vertedor de tal manera que el almacenamiento no rebase el NAMO, si una tormenta severa produce tal cantidad de lluvia-escurrimiento pero no se tiene forma de evaluar la cantidad e intensidad de la lluvia que está ocurriendo, se deben observar los registros de la estación automática La Estanzuela con la

finalidad de que tener una idea de la distribución temporal o intensidad de la lluvia con el objetivo de incrementar las descargas en el vertedor cuidando que el volumen almacenado no rebase el NAME. Para lograr esto, será necesario incrementar la frecuencia de la observación del nivel de la presa a cada media hora y si esto no es suficiente, se deberá incrementar hasta 15 minutos con la finalidad de que se puedan tomar las decisiones de descarga necesarias en el vertedor para lograr controlar la avenida que esté ingresando al vaso.

Los resultados de las avenidas asociadas a un Tr=50 años, son provocadas por lluvias del orden de los 300 milímetros por lo que es importante conocer la cantidad y distribución temporal de las lluvias, ya que al presentarse lluvias de esta magnitud en promedio, se podrán generar entradas al vaso que provoquen descargas que pueden alcanzar los 740 m³/s en una duración de 11 horas, sin embargo, con estos caudales el río San Juan se desborda provocando daños a la población localizada aguas abajo de la presa.

Con base en el párrafo anterior, es importante que las descargas en el vertedor se produzcan de manera controlada y en forma gradual, iniciando con descargas de 50 m³/s con incrementos entre 50 y 100 m³/s cuidando siempre que las descargas no rebasen los 560 m³/s y si las entradas al vaso son superiores, se deberá incrementar hasta igualar los gastos de entrada.

- 11.-Ante la respuesta tan rápida que la cuenca de la presa de La Boca con Iluvias superiores a los 100 mm, es necesario estar en comunicación con las autoridades de Protección Civil en el Estado y en los municipios de Santiago, Benito Juárez y Cadereyta para alertar a la población acerca de las descargas del vertedor de la presa La Boca, así mismo, se deberá mantener constante comunicación con la Subgerencia de Hidrología Operativa de la GASIR, con la propia GASIR y con la SGT.
- 12.- La recomendación en cuanto a la operación del vertedor es iniciar con apertura de compuertas de los extremos hacia el centro con la finalidad de mantener una simetría en la descarga y evitar vórtices en el tanque disipador de energía, así mismo se deberá procurar mantener aperturas por arriba de las 40 cm con la finalidad de evitar daños al vertedor por cavitación.

5.1.2.-Recomendaciones para la presa La Boca.

La recomendación más importante es establecer un sistema de alertamiento hidrometeorológico en la cuenca de la presa La Boca a base de pluviómetros automáticos con transmisión a tiempo real cada 10 minutos, este sistema se podrá enlazar a través de un sistema de radiocomunicación con el Sistema de Alertamiento Hidrometeorológico de Monterrey, con el objetivo de conocer a tiempo real de la cantidad y distribución de la lluvia, en función del tamaño de las tres subcuencas, se podrían instalar en una primera etapa, dos pluviómetros en la subcuenca del arroyo La Chueca, uno en la parte más elevado y el otro en la parte media de la cuenca; uno en la subcuenca del arroyo Escamilla en el tercio más elevado de la cuencas y uno más en la subcuenca del arroyo el Puerco también en el tercio más elevado de la cuenca.

Otra recomendación no menos importante, es realizar un estudio topográfico con mucho detalle en el tramo del río San Juan aguas abajo de la cortina de la presa La Boca hasta su confluencia con el río Santa Catarina en el municipio de Cadereyta, esto con la finalidad de elaborar el plano de inundación que se podría provocar al transitar en el cauce las descargas del vertedor asociados a los períodos de retorno de 50, 100, 500, 1000 y 10 000 años. La razón de esta recomendación es por la gran modificación que está sufriendo la parte baja y media de la cuenca de la presa de La Boca en cuanto al uso de suelo y por ende la cubierta vegetal lo cual puede provocar que se incremente el número de escurrimiento y por consecuencia el escurrimiento superficial y disminuir en una buena proporción el tiempo de concentración de las avenidas y provocar con ello, que las descargas sean mayores con menor tiempo para operar el sistema y por consecuencia los daños a la población se incrementen.

5.2.- Presa El Cuchillo-Solidaridad

Con base en los análisis efectuados para llevar a cabo la revisión hidrológica de la presa El Cuchillo-Solidaridad, se concluye que esta presa es segura desde el punto de vista hidrológico, ya que al transitar la avenida de diseño asociada a un Tr=10 000 años, en el vaso de la presa y mediante la aplicación de las políticas de operación del vertedor, iniciando la simulación a partir del nivel al que se encuentra el NAMO, el volumen transitado no rebasa la capacidad máxima extraordinaria de esta presa ni se rebasa la capacidad máxima de descarga del vertedor.

Por lo anterior, las características de esta presa no cambian de tal manera que el nivel y volumen asignado al NAMO son de 162.35 msnm y 1123.143 Mm³; para el NAME son de 166.66 msnm y 1784.292 Mm³.

A diferencia de la presa La Boca, en esta presa no se tiene el problema de llenados rápidos y la capacidad asignada para el control de avenidas, proporciona el suficiente tiempo para la toma de decisiones.

Desde el punto de vista hidrológico el diseño de las capacidades de esta presa, proporcionan la seguridad necesaria siempre y cuando las variables asociadas a la operación del vertedor estén resueltas satisfactoriamente, sin embargo, si se llega a presentar esta avenida, la descarga que se produciría no se podría contener en la capacidad hidráulica del río San Juan el cual presenta una capacidad sin desbordarse del orden de los 5 000 m³/s. de tal manera que si esto llega a ocurrir el plano de inundación provocado por la descarga del volumen sería de dimensiones catastróficas para la población que se localiza aguas abajo por lo que se tendría que tener una vigilancia especial en las ciudades de China, General Bravo, Doctor Coss y Los Aldama en el estado de Nuevo León ya que al presentarse una descarga de la magnitud de los 9 670 m³/s, existe una probabilidad muy alta de que parte de las poblaciones antes mencionada sufran de inundaciones. Así mismo, se tendría que tener una visión general de lo que suceda en el resto de la cuenca del río San Juan, los niveles de la presa Marte R. Gómez y los niveles de las presas Venustiano Carranza, Coahuila y Falcón Tamaulipas, con la finalidad de que las descargas de la presa el Cuchillo puedan ser manejadas de una manera óptima

cuidando de que estas no produzcan descargas en el vertedor libre de la presa Marte R. Gómez que puedan ocasionar problemas e inundación en la Ciudad de Reynosa Tamaulipas y con el resto de la operación del sistema para el control de avenidas en el bajo Río Bravo.

5.2.1.- Recomendaciones para la presa El Cuchillo-Solidaridad

La principal recomendación para la buena operación de esta presa durante la presencia de avenidas asociadas a períodos de retorno superiores a 50 años, o inclusive menores, es rehabilitar las estaciones hidrométricas localizadas aguas arriba de esta presa como lo son, la estación Las Enramadas localizada sobre el río San Juan antes de su descarga a la presa El Cuchillo-Solidaridad, la estación Tepehuaje localizada sobre el río San Juan aguas abajo de la confluencia de éste con el río Santa Catarina, la estación hidrométrica Las Brisas, localizada sobre el río Pilón aguas arriba de su confluencia de éste con el río San Juan, la estación Raíces localizada sobre el río Ramos antes de la descarga de éste al río San Juan y la estación hidrométrica El Cuchillo.

La rehabilitación puede ser de dos maneras, rehabilitar la obra civil para alojar una estación automática con transmisión a tiempo real vía satélite y o mediante la contratación de aforadores; de las estaciones antes mencionadas en solo dos de ellas se cuenta con aforador, el resto de las estaciones están sin aforador por retiro voluntario del personal.

La instalación de estaciones automáticas es la forma más fácil de volver a reactivar la medición de los escurrimientos en los principales tributarios del río san Juan antes de su descarga en la presa y la rehabilitación de la estación El Cuchillo, sería con la finalidad de medir las descargas del vertedor y calibrar las curvas que se tienen elaboradas para diferentes políticas de operación.

Otra recomendación no menos importante, es realizar un estudio topográfico con mucho detalle en el tramo del río San Juan entre las presas El Cuchillo-Solidaridad y la presa Marte R. Gómez, esto con la finalidad de elaborar el plano de inundación que se podría provocar al transitar en el cauce las descargas del vertedor asociados a los períodos de retorno de 50, 100, 500, 1000 y 10 000 años.

Capítulo 6

BIBLIOGRAFÍA CONSULTADA

Acuerdo de Coordinación, firma de los acuerdos para el aprovechamiento y reglamentación de las aguas del río san Juan, del 13 de noviembre de 1996

Aldama, Álvaro A. (2000), "Hidrología de avenidas", Conferencia Enzo Levi 1998, *Ingeniería Hidráulica en México*, Vol. XV, Núm. 3.

Aldama Álvaro A. (2006), "documento en preparación, Academia de Ingeniería, México"

Aldama, A., Aparicio, F. J., Ramírez, A., Mejía, R., Santillán, O., López, J., Esparza J.L y Gómez, J. F. "Seguridad hidrológica de 16 presas en México" Anuario IMTA 2005

Aldama, Álvaro A y Aguilar, E. (1997), "Tránsito inverso para la estimación de avenidas de ingreso a vasos", *Ingeniería Hidráulica en México*, Vol. XII, Núm. 1.

Aldama, Álvaro A. y Ramírez, A. I. (1998a), "Parametrización de hidrogramas mediante interpolantes hermitianos", *Ingeniería Hidráulica en México*, Vol. XII, Núm. 3.; (1998b), "Design Floods in River Networks", Water Resources Engineering '98, Memphis, TN.

Aldama, Álvaro A. y Ramírez, A. I. (1999), "A new approach for dam design flood estimation", XXVIII IAHR Congress, Graz, Austria.

Aldama, Álvaro A. y Ramírez, A. I. (2000), "A new approach for dam design flood estimation", International Commission on Large Dams, XX Congress, Beijing, China.

Aldama, Álvaro A. y Ramírez, A. I. (2001), "Huites dam design flood revisited", Hydraulics Issues on Huge Water Projects, Beijing.

Aldama, Álvaro A. y Ramírez, A. I. (2002), "Dam design flood estimation based on bivariate extreme-value distributions", IAHS Publication, 271.

Aldama, Álvaro A. y Ramírez, A. I. (2003), "Multivariate frequency analysis for the characterization of extreme hydrometeorological events", First International Conference on Hydrology and Water Resources in Asia Pacific Region, Japan.

Aldama, Álvaro A. y Ramírez, A. I. (2005), "Aspectos de hidrología de presas: diseño y operación", Las presas y el hombre, Gustavo A. Paz Soldán, Humberto Marengo y Felipe I. Arreguín (eds.), AMH/IMTA, "Avances en Hidráulica", Núm. 12, México.

Anexo 5, Acuerdo de Coordinación, firma de los acuerdos para el aprovechamiento y reglamentación de las aguas del río san Juan, del 13 de noviembre de 1996

Aparicio, F.J. (1992), "Fundamentos de hidrología de superficie", Limusa, México.

Arreguín, C. Felipe I. "Obras de excedencia" IMTA, 2000

BANDAS (1997) Banco de datos de aguas superficiales, CNA, IMTA.

Boletín hidrológico No. 27, tomo II de la Secretaría de Recursos Hidráulicos, 1972

Carreola, J. (2002), "Programa Nacional de Seguridad de Presas, CNA", Sociedad Mexicana de Mecánica de Suelos, A. C., Seminario de Seguridad de Presas, ciudad de México.

Chow, W.T. (1964), "Handbook of applied hydrology", McGraw-Hill

CNA, 1993, Manual de Ingeniería de Ríos, Estudio Hidrológico para Obras de Protección,

Hydrologic Modeling System HEC-HMS, Technical Reference Manual, march 2000

Jimenez, E. M. "Ajuste de Funciones de Pobabilidad, AX, ver 10.05", julio, 1997. Centro de Nacional de Prevención de desastres.

Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994

Ramírez, A. I. y Aldama, Álvaro A. (2000), Análisis de frecuencias conjunto para la estimación de avenidas de diseño, AMH/IMTA, "Avances en Hidráulica", Núm. 7, Jiutepec, Morelos.

Ramírez y Aldama, (2001), "Solución analítica aproximada de la ecuación de tránsito de avenidas en vasos", Ingeniería Hidráulica en México, Vol. XVI, Núm. 4.

Rivera T. Fabián y Escalante S. Carlos, "Análisis comparativo de técnicas de estimación de avenidas de diseño" Vol. 6 • No 1 • marzo 1999 p. 49

SARH, 1987, Dirección General de Administración y Control de Sistemas Hidrológicos, Instructivo de hidrología para determinar avenida máxima ordinaria. México, D.F.

Kite G. W., "Frequency and risk analysis in hydrology", Water Resources Publications, Colo. St. Univ. Fort Collins., 1988.

US Army Corps of Engineers, Hydrologic Engineering Center, 2005 HEC-HMS Hydrologic Modeling System, version 3.0.1 Hydraulic Reference Manual

Fe de Erratas

Página 39, tercer párrafo dice:

Donde Q es el caudal, A el área de la sección transversal activa, A_0 el área de la sección transversal inactiva o de capacidad muerta, h_y la altura de la superficie del agua, v_x es la velocidad del afluente lateral en la dirección x del río, Bel ancho superior del área de la sección transversal activa, n el coeficiente de rugosidad de Manning, Rel radio hidráulico, W_f el efecto del viento, C_w el coeficiente del viento, V_w la velocidad del viento, ω el ángulo entre la dirección del viento y el eje x del río, mientras que los otros símbolos representan las **varibales** previamente definidas. (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

Debe decir:

Donde Q es el caudal, A el área de la sección transversal activa, A_0 el área de la sección transversal inactiva o de capacidad muerta, h_y la altura de la superficie del agua, v_x es la velocidad del afluente lateral en la dirección x del río, Bel ancho superior del área de la sección transversal activa, n el coeficiente de rugosidad de Manning, Rel radio hidráulico, W_f el efecto del viento, C_w el coeficiente del viento, V_w la velocidad del viento, ω el ángulo entre la dirección del viento y el eje x del río, mientras que los otros símbolos representan las variables previamente definidas. (Organización Meteorológica Mundial "Guía de prácticas hidrológicas" OMM-No. 168, 1994).

Página 107, último párrafo dice:

Por lo anterior, se tomó la decisión de utilizar las tormentas correspondientes a los días 1 y 2 de julio de 2010 de la estación La Estanzuela para los análisis asociados a los períodos de retorno de 50 y 500 años y las correspondientes a los días 30 de junio, tabla 30.

Debe decir:

Por lo anterior, se tomó la decisión de utilizar las tormentas correspondientes a los días 1 y 2 de julio de 2010 de la estación La Estanzuela para los análisis asociados a los períodos de retorno de 50 y 500 años y las correspondientes a los días 30 de junio y 1 de julio de 2010 para los períodos de retorno de 1000 y 10 000 años, tabla 30.

Página 124, último párrafo dice:

Subtítulo 4.1.1.- Análisis de Frecuencias los Gastos Máximos Anuales de la estación hidrométrica El Cuchillo, N. L.

Debe decir:

Subtítulo 4.1.1.- Análisis de Frecuencias de los Gastos Máximos Anuales de la estación hidrométrica El Cuchillo, N. L.